This study found that one of the constructive, necessary, beneficial, most effective, and cost-effective ways to meet the great challenge of rising energy prices is to develop and improve energy quality and efficiency. The process of improving the quality of energy and its means has been carried out in many buildings and around the world. It was found that the thermal insulation process in buildings and educational facilities has become the primary tool for improving energy efficiency, enabling us to improve and develop the internal thermal environment quality processes recommended for users (student - teacher). An excellent and essential empirical study has been conducted to calculate the fundamental values of thermal conductivity coefficient for different types of cement mortar, including the different concentrations of cellulosic fibers. And in our study, those cellulosic fibers obtained from sugarcane and sugarcane residues (agricultural waste materials) were used. The percentage is 10%; 20% and 30% of cellulose fibers were added to the cement mixtures. Then the differences are measured, specifically in the physical properties (heat capacity, density, and thermal conductivity coefficient) for 28 days. The Design-Builder program also implemented a precise simulation of the thermal loads of the external envelope of the educational building that is exposed to direct sunlight before and after the insulation process. It was found that with the use of thermal insulation material (meaning the cellulosic fiber technology) mixed with the cement mortar layer of the educational building, the given value of the heat transfer coefficient W/m2 Kelvin decreased by 47.2%. Accordingly, this contributed significantly to a significant and very significant saving in the values of electrical energy consumption by 11.9% for cooling and heating operations and to reducing dangerous carbon dioxide emissions by 52.2%. The simulation has shown that applying thermal insulation techniques to all buildings and educational facilities is highly recommended to save a large consumption in the value of electrical energy and the costs of waste materials and to ensure integrated protection for the ecosystem.
Nitrogen dioxide NO2 is one of the most dangerous contaminant in the air, its toxic gas that cause disturbing respiratory effects, most of it emitted from industrial sources especially from the stack of power plants and oil refineries. In this study Gaussian equations modelled by Matlab program to state the effect of pollutant NO2 gas on area around Durra refinery, this program also evaluate some elements such as wind and stability and its effect on stacks height. Data used in this study is the amount of fuel oil and fuel gas burn inside refinery at a year 2017. Hourly April month data chosen as a case study because it’s unsteady month. After evaluate emission rate of the all fuel and calculate exit velocity from
... Show MoreThis study is aimed to Green-synthesize and characterize Al NPs from Clove (Syzygium aromaticum
L.) buds plant extract and to investigate their effect on isolated and characterized Salmonella enterica growth.
S. aromaticum buds aqueous extract was prepared from local market clove, then mixed with Aluminum nitrate
Al(NO3)3. 9 H2O, 99.9% in ¼ ratio for green-synthesizing of Al NPs. Color change was a primary confirmation
of Al NPs biosynthesis. The biosynthesized nanoparticles were identified and characterized by AFM, SEM,
EDX and UV–Visible spectrophotometer. AFM data recorded 122nm particles size and the surface roughness
RMs) of the pure S. aromaticum buds aqueous extract recorded 17.5nm particles s
A New developed technique to estimate the necessary six elastic constants of homogeneous laminate of special orthotropic properties are presented in this paper for the first time. The new approach utilizes the elasto-static deflection behavior of composite cantilever beam employing the famous theory of Timoshenko. Three extracted strips of the composite plate are tested for measuring the bending deflection at two locations. Each strip is associated to a preferred principal axis and the deflection is measured in two orthogonal planes of the beam domain. A total of five trails of testing is accomplished and the numerical results of the stiffness coefficients are evaluated correctly under the contribution of the macromechanic
... Show MoreStaphylococcus aureus is a common pathogenic agent due to its ability to cause various types of infections, ranging from mild skin infections to sever systemic diseases. One of the most virulence factors of this bacterium is its ability to from biofilms on solid surfaces by anchoring the planktonic cells and by producing a protective layer of extra polymeric substances. Biofilm formation is controlled through many genes. The most important ones are icaA and icaD. Dentures are prosthetic devices that are made of different materials to replace lost teeth. The aim of this study is to examine the ability of different types of denture materials to support the biofilm formation of S. aureus at phenotypic level by detecting ba
... Show MoreIn 2010, the tomato leaf miner Tuta absoluta (Meyrick, 1917) was reported for the first time in Iraq. The larvae can feed on all parts of tomato plants and can damage all the growth stages. The main host plant is tomato, Lycopersicon esculentum, but it can also attack other plants in Solanaceae family. In this study it was found attacking alfalfa plants, Medicago sativa in Baghdad Province. This finding reveals that alfalfa also serves as a host plant for T. absoluta in Iraq.
Background: The aim of this study was to evaluate the push-out bond strength of four different obturation materials to intraradicular dentin and to determine the failure mode. Materials and method: forty straight palatal roots of the maxillary first molars teeth were used in this study, the roots were instrumented using crown down technique and rotary EndoSequence system, the roots were randomly divided into four groups according to the materials used for obturation (n=10).Group (1): AH Plus sealer and gutta-percha. Group (2): Activ GP glass ionomer sealer and Activ GP gutta-percha (Activ GP system). Group (3): Bioceramic sealer and Bioceramic gutta-percha. Group (4): GuttaFlow2 sealer and gutta-percha. For all groups single cone obturatio
... Show MoreB3LYP/6-31G, DFT method was applied to hypothetical study the design of six carbon nanotube materials based on [8]circulene, through the use of cyclic polymerization of two and three molecules of [8]circulene. Optimized structures of [8]circulene have saddle-shaped. Design of six carbon nanotubes reactions were done by thermodynamically calculating (Δ S, Δ G and Δ H) and the stability of these hypothetical nanotubes depending on the value of HOMO energy level. Nanotubes obtained have the most efficient gap energy, making them potentially useful for solar cell applications.
