This study offers numerical simulation results using the ABAQUS/CAE version 2019 finite element computer application to examine the performance, and residual strength of eight recycle aggregate RC one-way slabs. Six strengthened by NSM CFRP plates were presented to study the impact of several parameters on their structural behavior. The experimental results of four selected slabs under monotonic load, plus one slab under repeated load, were validated numerically. Then the numerical analysis was extended to different parameters investigation, such as the impact of added CFRP length on ultimate load capacity and load-deflection response and the impact of concrete compressive strength value on the structural performance of slabs. This article aims to provide a numerical model for simulating the nonlinear behavior of such slabs, including a trustworthy finite element model approach and constitutive material models. In aspects of load-deflection and cracking patterns, comparisons between computational and experimental models are provided, and a reasonable fit is demonstrated. The average ratio of numerical model ultimate load and deflections to experimentally tested slabs were 0.992 and 0.913, respectively. As a result, finite element analysis may be regarded as a preferred and trustworthy approach for simulating the non-linear behavior of one-way slabs (strengthened or not) in terms of complexity, difficulty, time savings, human effort, and money.
In order to improve the effectiveness, increase the life cycle, and avoid the blade structural failure of wind turbines, the blades need to be perfectly designed. Knowing the flow angle and the geometric characteristics of the blade is necessary to calculate the values of the induction factors (axial and tangential), which are the basis of the Blade Element Momentum theory (BEM). The aforementioned equations form an implicit and nonlinear system. Consequently, a straightforward iterative solution process can be used to solve this problem. A theoretical study of the aerodynamic performance of a horizontal-axis wind turbine blade was introduced using the BEM. The main objective of the current work is to examine the wind turbine blade’s perf
... Show MoreThe problem of water scarcity is becoming common in many parts of the world, to overcome part of this problem proper management of water and an efficient irrigation system are needed. Irrigation with a buried vertical ceramic pipe is known as a very effective in the management of irrigation water. The two- dimensional transient flow of water from a buried vertical ceramic pipe through homogenous porous media is simulated numerically using the HYDRUS/2D software. Different values of pipe lengths and hydraulic conductivity were selected. In addition, different values of initial volumetric soil water content were assumed in this simulation as initial conditions. Different value
... Show MoreThe reality of the field of construction projects in Iraq refers to needing for the development of performance in order to improve quality and reduce defects and errors and to control the time and cost, so there is needing for the application of effective methods in this area, one of the methods that can be applied in this area is the manner of Six Sigma. This research aims to enhance the performance and quality improvement for the construction projects by improving performance in the work of the implementation of the concrete structure depending on the Six Sigma methodology, and for the purpose of achieving the aim of the research, the researcher firstly depends on the theoretical study that include the concepts of qual
... Show MoreA flexible pavement structure usually comprises more than one asphalt layer, with varying thicknesses and properties, in order to carry the traffic smoothly and safely. It is easy to characterize each asphalt layer with different tests to give a full description of that layer; however, the performance of the whole; asphalt structure needs to be properly understood. Typically, pavement analysis is carried out using multi-layer linear elastic assumptions, via equations and computer programs such as KENPAVE, BISAR, etc. These types of analysis give the response parameters including stress, strain, and deflection at any point under the wheel load. This paper aims to estimate the equivalent Resilient Modulus (MR) of the asphalt concrete
... Show MoreRoller compacted concrete (RCC) is a material with no slumps and is made from the same raw materials as conventional concrete. The roller compacted dam method, the high paste technique, the corps of engineers method, and the maximum density method are all ways of designing RCC. The evolution of RCC has resulted in a substantial change in construction projects, most notably in dams, because of the sluggish pace of conventional placement, consolidation, and compacting. The construction process was accelerated by incorporating RCC into dams, resulting in a shorter construction period. Research shows that the dams that used RCC had completed one to two years sooner than the dams that used regular concrete (Bagheri an
... Show MoreSeveral stress-strain models were used to predict the strengths of steel fiber reinforced concrete, which are distinctive of the material. However, insufficient research has been done on the influence of hybrid fiber combinations (comprising two or more distinct fibers) on the characteristics of concrete. For this reason, the researchers conducted an experimental program to determine the stress-strain relationship of 30 concrete samples reinforced with two distinct fibers (a hybrid of polyvinyl alcohol and steel fibers), with compressive strengths ranging from 40 to 120 MPa. A total of 80% of the experimental results were used to develop a new empirical stress-strain model, which was accomplished through the application of the parti
... Show MoreColumns subjected to pure axial load rarely exist in practice. Reinforced concrete columns are usually subjected to combination of axial and lateral actions and deformations, caused by spatially‐complex loading patterns as during earthquakes causes lateral deflection that in turn affects the horizontal stiffness. In this study, a numerical model was developed in threedimensional nonlinear finite element and then validated against experimental results reported in the literatures,
to investigate the behavior of conventionally RC columns subjected to axial load and . lateral reversal cyclic loading. To achieve this goal, numerical analysis was conducted by using finite element program ABAQUS/Explicit. The variables co
Corrosion experiments were carried out to investigate the effect of several operating parameters on the corrosion rate and corrosion potential of carbon steel in turbulent flow conditions in the absence and presence of sodium benzoate inhibitor using electrochemical polarization technique. These parameters were rotational velocity (0 - 1.57 m/s), temperature (30oC – 50oC), and time. The effect of these parameters on the corrosion rate and inhibition efficiency were investigated and discussed. It was found that the corrosion rate represented by limiting current increases considerably with increasing velocity and temperature and that it decreased with time due to the formation of corrosion product layer. The corrosion potential shifted t
... Show MoreThis paper delves into some significant performance measures (PMs) of a bulk arrival queueing system with constant batch size b, according to arrival rates and service rates being fuzzy parameters. The bulk arrival queuing system deals with observation arrival into the queuing system as a constant group size before allowing individual customers entering to the service. This leads to obtaining a new tool with the aid of generating function methods. The corresponding traditional bulk queueing system model is more convenient under an uncertain environment. The α-cut approach is applied with the conventional Zadeh's extension principle (ZEP) to transform the triangular membership functions (Mem. Fs) fuzzy queues into a family of conventional b
... Show More