Preferred Language
Articles
/
joe-1609
Influence of Fire-Flame Duration and Temperature on the Behavior of Reinforced Concrete Beam Containing Water Absorption Polymer Sphere; Numerical Investigation
...Show More Authors

One of the most important parameters determining structural members' durability and strength is the fire flame's influence and hazard. Some engineers have advocated using advanced analytical models to predict fire spread impact within a compartment and considering finite element models of structural components to estimate the temperatures within a component using heat transfer analysis. This paper presented a numerical simulation for a reinforced concrete beam’s structural response in a case containing Water Absorbing Polymer Spheres (WAPS) subjected to fire flame effect. The commercial finite element package ABAQUS was considered. The relevant geometrical and material parameters of the reinforced concrete beam model at elevated temperature are first suggested as a numerical model. After that, the suggested numerical model was validated against the experimental tests conducted in this study. The validated numerical model was used to conduct a parametric study to investigate the effects of two important parameters on the structural behavior after being exposed to fire flame. The effect of burning temperatures (500, 600, and 700) oC, as well as the influence of fire duration (1 and 2) hours, were included. The experimental program validation requirement comprised four self-compacted reinforced concrete beams each of the same geometric layout (150x200x1500) mm, reinforcing details, and compressive strength (fc'=50 MPa). Four percentages of (WAPS) were considered (0, 1, 2, and 3)%. The specimens were exposed to a fire flame with a steady-state temperature (500°C), a rising rate compatible with ASTM-E119, a one-hour duration, and a sudden cooling procedure. A static (two-point) load was applied to the burned beams.

Through the assessed numerical model, the numerical analysis offered by the WAPS ratio effect was carried out for the reinforced concrete beam under the effect of static load. The findings revealed that the WAPS ratio substantially impacted structural behavior. The numerical model's results were in reasonable agreement with the experimental results. Concerning the fire exposure duration (two hours) at 500 oC, the specimens containing a ratio (3%) of WAPS improved the ultimate load and the ultimate deflection by about (46.63 and 72.24)%, respectively. The highest percentage variation of the absorbed energy at failure load was also detected in the ratio (3%) to be (139.43) %. As for the hardening concrete properties (compressive strength, splitting tensile strength, and modulus of elasticity), the residual strength was (61.06, 48.87, and 32.00)%, respectively. Regarding the steady-state burning temperature (500, 600, and 700)oC for a one-hour duration, the specimens with a ratio of (3%) WAPS improved the ultimate load by about (40.70, 62.00, and 40.76)%, respectively, corresponding to zero percentage of WAPS. The residual compressive strength, splitting tensile strength, and modulus of elasticity were (72.40, 56.12, and 43.78)%, (74.36, 56.50, and 44.79)%, and (45.23, 36.57, and 28.94)%, respectively.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Aug 05 2020
Journal Name
Advances In Civil Engineering
Strength compensation of deep beams with large web openings using carbon fiber–reinforced polymer sheets
...Show More Authors

This article presents the results of an experimental investigation of using carbon fiber–reinforced polymer sheets to enhance the behavior of reinforced concrete deep beams with large web openings in shear spans. A set of 18 specimens were fabricated and tested up to a failure to evaluate the structural performance in terms of cracking, deformation, and load-carrying capacity. All tested specimens were with 1500-mm length, 500-mm cross-sectional deep, and 150-mm wide. Parameters that studied were opening size, opening location, and the strengthening factor. Two deep beams were implemented as control specimens without opening and without strengthening. Eight deep beams were fabricated with openings but without strengthening, while

... Show More
Scopus (20)
Crossref (20)
Scopus Clarivate Crossref
Publication Date
Wed Aug 05 2020
Journal Name
Advances In Structural Engineering
Strength compensation of deep beams with large web openings using carbon fiber–reinforced polymer sheets
...Show More Authors

This article presents the results of an experimental investigation of using carbon fiber–reinforced polymer sheets to enhance the behavior of reinforced concrete deep beams with large web openings in shear spans. A set of 18 specimens were fabricated and tested up to a failure to evaluate the structural performance in terms of cracking, deformation, and load-carrying capacity. All tested specimens were with 1500-mm length, 500-mm cross-sectional deep, and 150-mm wide. Parameters that studied were opening size, opening location, and the strengthening factor. Two deep beams were implemented as control specimens without opening and without strengthening. Eight deep beams were fabricated with openings but without strengthening, while

... Show More
View Publication
Crossref (20)
Crossref
Publication Date
Sat Nov 27 2021
Journal Name
Lecture Notes In Civil Engineering
An Experimental Study on Concavely Curved Soffit Reinforced Concrete Beams Externally Bonded with FRP
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Mon Aug 05 2024
Journal Name
Food And Bioprocess Technology
Development of an Innovative Reinforced Food Packaging Film Based on Corn Starch/Hydroxypropyl Methylcellulose/Nanocrystalline Cellulose Incorporated with Nanogel Containing Quercetin
...Show More Authors

View Publication
Scopus (5)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sat Sep 01 2018
Journal Name
2018 15th European Radar Conference (eurad)
Delamination Detection in Glass-Fibre Reinforced Polymer (GFRP) Using Microwave Time Domain Reflectometry
...Show More Authors

View Publication
Scopus (16)
Crossref (14)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of The Mechanical Behavior Of Materials
Concrete strength development by using magnetized water in normal and self-compacted concrete
...Show More Authors
Abstract<p>The main objective of this work was to adopt an environmentally friendly technology with enhanced results. The technology of magnetic water (MW) treatment system can be used in concrete mixture production instead of potable water (PW) to improve both workability and strength. Two types of concrete were adopted: normal concreter production with two grades 25 and 35 MPa and the self-compacted concrete (SCC) with 35 MPa grade. The concrete mixes containing MW instead of PW results showed that, for 25 MPa grade, an improvement in a compressive strength of 15.1, 14.8, and 10.2% was achieved for 7, 28, and 90 days, respectively. For 35 MPa grade, an improvement of 13.6, 11.5, and </p> ... Show More
View Publication
Scopus (3)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of The Mechanical Behavior Of Materials
Concrete strength development by using magnetized water in normal and self-compacted concrete
...Show More Authors
Abstract<p>The main objective of this work was to adopt an environmentally friendly technology with enhanced results. The technology of magnetic water (MW) treatment system can be used in concrete mixture production instead of potable water (PW) to improve both workability and strength. Two types of concrete were adopted: normal concreter production with two grades 25 and 35 MPa and the self-compacted concrete (SCC) with 35 MPa grade. The concrete mixes containing MW instead of PW results showed that, for 25 MPa grade, an improvement in a compressive strength of 15.1, 14.8, and 10.2% was achieved for 7, 28, and 90 days, respectively. For 35 MPa grade, an improvement of 13.6, 11.5, and </p> ... Show More
Crossref (5)
Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Computers And Concrete
Improving the seismic performance of reinforced concrete frames using an innovative metallic-shear damper
...Show More Authors

Scopus (11)
Scopus
Publication Date
Sun Sep 04 2016
Journal Name
Baghdad Science Journal
Investigation of the New Room Temperature Ionic Liquid of Al(NO3)3.9H2O with Urea CO(NH2)2
...Show More Authors

Mixing aluminum nitrate nonahydrate with urea produced room temperatures clear colorless ionic liquid with lowest freezing temperature at (1: 1.2) mole ratio respectively. Freezing point phase diagram was determined and density, viscosity and conductivity were measured at room temperature. It showed physical properties similar to other ionic liquids. FT-IR,UV-Vis, 1H NMR and 13C NMR were used to study the interaction between its species where - CO ??? Al- bond was suggested and basic ion [Al(NO3)4]? and acidic ions [Al(NO3)2. xU]+ were proposed. Water molecule believed to interact with both ions. Redox potential was determined to be about 2 Volt from – 0.6 to + 1.4 Volt with thermal stability up to 326 ?.

View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Wed May 01 2019
Journal Name
Optik
Ag2S/ZnO Nanorods Composite Photoelectrode Prepared by Hydrothermal Method: Influence of Growth Temperature
...Show More Authors

View Publication
Scopus (23)
Crossref (20)
Scopus Clarivate Crossref