Generally, direct measurement of soil compression index (Cc) is expensive and time-consuming. To save time and effort, indirect methods to obtain Cc may be an inexpensive option. Usually, the indirect methods are based on a correlation between some easier measuring descriptive variables such as liquid limit, soil density, and natural water content. This study used the ANFIS and regression methods to obtain Cc indirectly. To achieve the aim of this investigation, 177 undisturbed samples were collected from the cohesive soil in Sulaymaniyah Governorate in Iraq. Results of this study indicated that ANFIS models over-performed the Regression method in estimating Cc with R2 of 0.66 and 0.48 for both ANFIS and Regression models, respectively. This work is an effort to practice the advantages of machine learning techniques to build a robust and cost-effective model for Cc estimation by designers, decision makers, and stakeholders.
Background: Differentiation between malignant and benign vertebral compression fracture is often problematic. This is precisely difficult in elderly who are predisposed to benign compression caused by osteoporosis .Establishing correct diagnosis is of great importance in determining the treatment andprognosis.A study was performed to determine which magnetic resonance imaging findings are useful in discrimination between metastatic and acute osteoporotic compression fractures of the spine. Recently MRI is being increasingly used for evaluation of these fractures.Objectives: The aim of this study is to establish the correct diagnosis of malignant and benign compression vertebral fracture by MRI to determine treatment and prognosis.Methods
... Show MoreAir pollution from various sources is one of the most serious environmental problems, especially after pollutants are deposited on the surface of the soil and leaves of the plants and then transferred to the rest of the plant and entering food chains. The present study was conducted to determine the effects of air pollution on different biochemical parameters in Eucalyptus sp. and calculation the Air Pollution Tolerance Index. The selected plant leaves were collected from five sites, four of them within the city of Baghdad, namely Al-Jadriya, Al-Andlous, Al-Doura and close to the private generators to represent the urban areas and Abu Ghraib site to represent the rural area. The leaves were taken on a seasonal basis for the period from Octo
... Show MoreThe production of polyhydroxyalkanoates PHAs from biopolymer degrading bacteria was examined
The Central Marshes are one of southern Iraq's most important wetlands and ecosystems. A study on evaluating soil quality and water quality in terms of chemical properties at certain sites in the southern Iraqi Central Marshes has been conducted to investigate their types and suitability for enhancing the agricultural reality of most field crops. Soil and water samples were collected from 15 sites and transferred to the laboratory. In the lab, the following parameters were determined: electrical conductivity (EC), total dissolved salts (TDS), organic materials (OM), pH, gypsum, and total sulfate content (SO3). The tests conducted on the samples indicated that it could be said that the soil of the Central Marshes
... Show MoreObjective This research investigates Breast Cancer real data for Iraqi women, these data are acquired manually from several Iraqi Hospitals of early detection for Breast Cancer. Data mining techniques are used to discover the hidden knowledge, unexpected patterns, and new rules from the dataset, which implies a large number of attributes. Methods Data mining techniques manipulate the redundant or simply irrelevant attributes to discover interesting patterns. However, the dataset is processed via Weka (The Waikato Environment for Knowledge Analysis) platform. The OneR technique is used as a machine learning classifier to evaluate the attribute worthy according to the class value. Results The evaluation is performed using
... Show More<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, c
... Show MoreWe explore the transform coefficients of fractal and exploit new method to improve the compression capabilities of these schemes. In most of the standard encoder/ decoder systems the quantization/ de-quantization managed as a separate step, here we introduce new way (method) to work (managed) simultaneously. Additional compression is achieved by this method with high image quality as you will see later.