Conjugate heat transfer has significant implications on heat transfer characteristics, particularly in thick wall applications and small diameter pipes. In this study, a three-dimensional numerical investigation was carried out using commercial CFD software “ANSYS FLUENT” to study the influence of conjugate heat transfer of laminar flow in mini channels at constant heat flux wall conditions. Two parameters were studied and analyzed: the wall thickness and thermal conductivity and their effect on heat transfer characteristics such as temperature profile and Nusselt number. Thermal conductivity of (0.25, 10, 202, and 387) W/m2C and wall thickness of (1, 5, and 50) mm were used for a channel of (1*2) mm cross-sectional dimensions. Taking the Reynolds number 800 for all cases. The results demonstrate that the conjugate conduction impact is observed at high conductivities and for large wall thicknesses in the studied materials. This impact flattened the wall temperature distribution along the channel wall instead of being an augmented linear profile. Also, it flattens the local Nusselt number due to the axial heat conduction along the walls. It reduces the effect of the entrance region of high Nusselt number while making the fluid temperature profile curved and redistributing the wall heat flux and accumulating it toward the leading edge. A decrease was observed in the average Nusselt number of 8% when increasing wall thickness from 1 mm to 50 mm for the same thermal conductivity of 10 W/m2C, while an increase in Nusselt number of 19% with thermal conductivity changes from 0.25 W/m2C to 10 W/m2C.
The coefficient of charge transfer at heterogeneous devices of Au metal with a well-known dyeis investigations using quantum model.Four different solvent are used to estimation the effective transition energy. The potential barrier at interface of Au and dye has been determined using effective transition energy and difference between the Fermi energy of Au metal and ionization energy of dye. A possible transfer mechanism cross the potential barrier dyeand coupling strength interaction between the electronic levels in systems of Au and is discussed.Differentdata of effective transition energy and potential barrier calculations suggest that solvent is more suitable to binds Au with dye.
In this paper, analyzing the non-dimensional Magnesium-hydrodynamics problem Using nanoparticles in Jeffrey-Hamel flow (JHF) has been studied. The fundamental equations for this issue are reduced to a three-order ordinary differential equation. The current project investigated the effect of the angles between the plates, Reynolds number, nanoparticles volume fraction parameter, and magnetic number on the velocity distribution by using analytical technique known as a perturbation iteration scheme (PIS). The effect of these parameters is similar in the converging and diverging channels except magnetic number that it is different in the divergent channel. Furthermore, the resulting solutions with good convergence and high accuracy for the d
... Show MoreIn this paper, an experimental study was conducted to enhance the thermal performance of a double-pass solar air heater (SAH) using phase change material (PCM) for thermal storage at climatic conditions of Baghdad city - Iraq. The double-pass solar air heater integrated with thermal storage system was manufactured and tested to ensure that the air heating reserved after the absence of the sun. The rectangular cavity filled with paraffin wax was used as a latent heat storage and incorporated into the lower channel of solar air heater. Experiments were carried out to evaluate the charging and discharging characteristics of two similar designed solar air collectors with and without using phase change material at a constant
... Show MoreAn experimental study is conducted to investigate the effect of heat flux distribution on the boiling safety factor of its cooling channel. The water is allowed to flow in a horizontal circular pipe whose outlet surface is subjected to different heat flux profiles. Four types of heat flux distribution profiles are used during experiments: (constant distribution profile, type a, triangle distribution profile with its maximum in channel center, type b, triangle distribution profile with its maximum in the channel inlet, type c, and triangle distribution profile with its maximum in the channel outlet, type d). The study is conducted using heat sources of (1000 and 2665W), water flow rates of (5, 7 and 9 lit/min). The water
... Show MorePhase change materials (PCMs) such as paraffin wax can be used to store or release large amount of energy at certain temperature at which their solid-liquid phase changes occurs. Paraffin wax that used in latent heat thermal energy storage (LHTES) has low thermal conductivity. In this study, the thermal conductivity of paraffin wax has been enhanced by adding different mass concentration (1wt.%, 3wt.%, 5wt.%) of (TiO2) nano-particles with about (10nm) diameter. It is found that the phase change temperature varies with adding (TiO2) nanoparticles in to the paraffin wax. The thermal conductivity of the composites is found to decrease with increasing temperature. The increase in thermal conductivity ha
... Show MoreThis study focuses on CFD analysis in the field of the shell and double concentric tube heat exchanger. A commercial CFD package was used to resolve the flow and temperature fields inside the shell and tubes of the heat exchanger used. Simulations by CFD are performed for the single shell and double concentric tube.
This heat exchanger included 16 tubes and 20 baffles. The shell had a length of 1.18 m and its diameter was 220 mm. Solid Works 2014, ANSYS 15.0 software was used to analyze the fields of flow and temperature inside the shell and the tubes. The RNG k-ε model was used and it provided good results. Coarse and fine meshes were investigated, showing that aspect ratio has no significant effect. 14 million
... Show MoreAbstract
This work deals with a numerical investigation to evaluate the utilization of a water pipe buried inside a roof to reduce the heat gain and minimize the transmission of heat energy inside the conditioning space in summer season. The numerical results of this paper showed that the reduction in heat gain and energy saving could be occurred with specific values of parameters, like the number of pipes per square meter, the ratio of pipe diameter to the roof thickness, and the pipe inlet water temperature. Comparing with a normal roof (without pipes), the results indicated a significant reduction in energy heat gain which is about 37.8% when the number of pipes per m
... Show More