Conjugate heat transfer has significant implications on heat transfer characteristics, particularly in thick wall applications and small diameter pipes. In this study, a three-dimensional numerical investigation was carried out using commercial CFD software “ANSYS FLUENT” to study the influence of conjugate heat transfer of laminar flow in mini channels at constant heat flux wall conditions. Two parameters were studied and analyzed: the wall thickness and thermal conductivity and their effect on heat transfer characteristics such as temperature profile and Nusselt number. Thermal conductivity of (0.25, 10, 202, and 387) W/m2C and wall thickness of (1, 5, and 50) mm were used for a channel of (1*2) mm cross-sectional dimensions. Taking the Reynolds number 800 for all cases. The results demonstrate that the conjugate conduction impact is observed at high conductivities and for large wall thicknesses in the studied materials. This impact flattened the wall temperature distribution along the channel wall instead of being an augmented linear profile. Also, it flattens the local Nusselt number due to the axial heat conduction along the walls. It reduces the effect of the entrance region of high Nusselt number while making the fluid temperature profile curved and redistributing the wall heat flux and accumulating it toward the leading edge. A decrease was observed in the average Nusselt number of 8% when increasing wall thickness from 1 mm to 50 mm for the same thermal conductivity of 10 W/m2C, while an increase in Nusselt number of 19% with thermal conductivity changes from 0.25 W/m2C to 10 W/m2C.
The objective of this study was to develop neural network algorithm, (Multilayer Perceptron), based correlations for the prediction overall volumetric mass-transfer coefficient (kLa), in slurry bubble column for gas-liquid-solid systems. The Multilayer Perceptron is a novel technique based on the feature generation approach using back propagation neural network. Measurements of overall volumetric mass transfer coefficient were made with the air - Water, air - Glycerin and air - Alcohol systems as the liquid phase in bubble column of 0.15 m diameter. For operation with gas velocity in the range 0-20 cm/sec, the overall volumetric mass transfer coefficient was found to decrease w
... Show Morein this paper, we study and investigate a simple donor-acceptor model for charge transfer formation using a quantum transition theory. The transfer parameters which enhanced the charge transfer and the rate of the charge transfer have been calculated. Then, we study the net charge transfer through interface of Cu/F8 contact devices and evaluate all transfer coefficients. The charge transfer rate of transfer processes is found to be dominated in the low orientation free energy and increased a little in decreased potential at interface comparison to the high potential at interface. The increased transition energy results in increasing the orientation of Cu to F8. The transfer in the system was more active when the system has large driving for
... Show MoreIn this research, non-thermal plasma system of argon gas is designed to work at normal atmospheric pressure and suitable for work in medical and biotechnological applications. This technique is applied in the treatment of the Staphylococcus epidermidis bacteria and show the role of the flow rate of Argon gas on the killing rate of bacteria, and it obtained a 100 % killing rate during the time of 5 minutes at the flow Argon gas of 5 liters/ min.
A new simple and sensitive spectrophotometric method is described for quantification of Nifedipine (NIF) and their pharmaceutical formulation. The selective method was performed by the reduction of NIF nitro group to yield primary amino group using zinc powder with hydrochloric acid. The produced aromatic amine was submitted to oxidative coupling reaction with pyrocatechol and ammonium ceric nitrate to form orange color product measured spectrophotometrically with maximum absorption at 467nm. The product was determined through flow injection analysis (FIA) system and all the chemical and physical parameters were optimized. The concentration range from 5.0 to 140.0 μg.mL-1 was obeyed Beer’s law with a limit of detection and quantitatio
... Show MoreIn this paper, the Magnetohydrodynamic (MHD) for Williamson fluid with varying temperature and concentration in an inclined channel with variable viscosity has been examined. The perturbation technique in terms of the Weissenberg number to obtain explicit forms for the velocity field has been used. All the solutions of physical parameters of the Darcy parameter , Reynolds number , Peclet number and Magnetic parameter are discussed under the different values as shown in plots.
This study introduces a highly sensitive trapezium-shaped PCF based on an SPR refractometric sensor with unique design features. The structure of a sensor was designed and analyzed using COMSOL Multiphysics v5.6 based on Finite Element Method (FEM) with a focus on investigating the influence of various geometric parameters on its performance. The two channels were coated with a metallic gold layer to provide chemical stability, and a thin layer of TiO₂ improved the gold's adhesion to the fiber. The findings indicate that the proposed sensor achieves maximum amplitude and wavelength sensitivities of 1,779 RIU⁻¹ and 30,500 nm/RIU, respectively, with corresponding resolutions of 3.2
This study was designed to monitor the ambient air pollution in several sites within Baghdad City of Iraq. The readings started from May 2016 to April 2017. The highest concentration of sulfur dioxide (SO2) was 2.28 ppmm-3 while nitrogen dioxide (NO2) was 3.68 ppmm-3 and suspended particulate matter was 585.1 ?gm-3. This study also included estimating the value of the air pollution tolerance index (APTI) for four plant's species Olea europaea L., Ziziphus spina-Christi (L.) Desf, Albizia lebbeck(L.) Benth. and Eucalyptus camaldulensis Dehnh. Were cultivated on the road sides. The study includes four biochemical parameters, total chlorophyll content, ascorbic acid content, pH and relative water content of plant leaves. The results show that
... Show MoreThe printed circuit heat exchanger is a plate type heat exchanger with a high performance and compact size. Heat exchangers such as this need a unique form of bonding and other techniques to be used in their construction. In this study, the process of joining plates, diffusion bonding, was performed and studied. A special furnace was manufactured for bonding purposes. The bonding process of copper metal was carried out under specific conditions of a high temperature up to 700 oC, high pressure of 3.45 MPa, and in an inert environment (Argon gas) to make tensile samples. The tensile samples are cylindrical shapes containing groves representing the flow channels in the printed circuit heat exchanger and checking their tensile st
... Show MoreTechnological and digital development has allowed the emergence of many methods of producing semantics on social media sites within semiotic and propagandistic frameworks. This is what made the image appear in different molds and shapes, especially as it is the first material for visual perception.
This made the Israeli propaganda discourse use it as an important tool to manage the content of suggestive messages with semiological connotations. By doing so, such tool uses social networking sites as an appropriate environment to achieve those goals, which are related to cases of manipulating emotions and minds. It, moreover, changes convictions, attitudes, trends and behaviors according to what the propaganda planner wants.
Many Isra