This study was done to investigate the impact of different nanoparticles on diesel fuel characteristics, Iraqi diesel fuel was supplied from al-Dura refinery and was treated to enhance performance by improving its characteristics. Two types of nanoparticles were mixed with Iraqi diesel fuel at various weight fractions of 30, 60, 90, and 120 ppm. The diesel engine was tested and run at a constant speed of 1600 rpm to examine and evaluate the engine's performance and determine emissions. In general, ZnO additives' performance analysis showed they are more efficient for diesel fuel engines than CeO. The performance of engine diesel fuel tests showed that the weight fraction of nanoparticles at 90 and 120 ppm give a similar performance, so, for economic aspects, the additives at 90 ppm of two types of nanoparticles gave good performance efficiency and the best reduction of gas emissions. The enhancement for ZnO additives is up to 34.28% compared to pure diesel fuel, while for nano CeO, the maximum enhancement is 20% compared to pure diesel fuel. The brake thermal efficiency increases with additives. The best improvements in brake thermal efficiency were 62% for ZnO and 59% for CeO, respectively, both at 120 ppm. A reduction in NOx, CO2, CO and UHC emissions was observed compared with the diesel fuel that was consumed from pure diesel fuel. The maximum reduction emissions values for NOx, CO, CO2 and un-burn hydrocarbon (UHC) were 63.77, 29.26, 56.41, and 57.37 % for ZnO, and 58.11, 37.80, 61.53, and 50.81 % for CeO additives. Therefore, it is recommended to utilize nanoparticles, especially ZnO, as a fuel additive with diesel fuel and consider them as an enhancer material to increase engine efficiency and reduce exhaust emissions.
Acinetobacter baumannii (A. baumannii ) is considered a critical healthcare problem for patients in intensive care units due to its high ability to be multidrug-resistant to most commercially available antibiotics. The aim of this study is to develop a colorimetric assay to quantitatively detect the target DNA of A. baumannii based on unmodified gold nanoparticles (AuNPs) from different clinical samples (burns, surgical wounds, sputum, blood and urine). A total of thirty-six A. baumannii clinical isolates were collected from five Iraqi hospitals in Erbil and Mosul provinces within the period from September 2020 to January 2021. Bacterial isolation and biochemical identification of isolates
... Show MoreIn this study, manganese dioxide (MnO₂) nanoparticles (NPs) were synthesized via the hydrothermal method and utilized for the adsorption of Janus green dye (JG) from aqueous solutions. The effects of MnO₂ NPs on kinetics and diffusion were also analyzed. The synthesized NPs were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDX), and Fourier-transform infrared spectroscopy (FT-IR), with XRD confirming the nanoparticle size of 6.23 nm. The adsorption kinetics were investigated using three models: pseudo-first-order (PFO), pseudo-second-order (PSO), and the intraparticle diffusion model. The PSO model provided the best fit (R² = 0.999), indicating that the adsorpti
... Show MoreRelease of industrial effluents comprising dyes in water bodies is one of the foremost causes of water pollution. Therefore, the proper and proficient treatment of these dyes contaminated left-over material before their release is crucial. Herein, an eco-friendly biological macromolecule Gum-Acacia (GA) integrated Fe3O4 nanoparticles composite hydrogel was manufactured via co-precipitation technique for effective adsorption of Congo red (CR) dye existing in water bodies. The as-prepared magnetic GA/Fe3O4 composite hydrogel was characterized by FTIR, XRD, EDX, VSM, SEM, and BET techniques. These studies discovered the fruitful fabrication of biodegradable magnetic GA/Fe3O4 composite hydrogel possessing porous structure with large surface are
... Show MoreBackground In recent years, there has been a notable increase in the level of attention devoted to exploring capabilities of nanoparticles, specifically gold nanoparticles AuNPs, within context of modern times. AuNPs possess distinct biophysical properties, as a novel avenue as an antibacterial agent targeting Streptococcus Mutans and Candida Albicans. The aim of this study to create a nano-platform that has the potential to be environmentally sustainable, in addition to exhibiting exceptional antimicrobial properties against Streptococcus Mutans as well as Candida Albicans. Methods this study involved utilization of
Solar photovoltaic (PV) system has emerged as one of the most promising technology to generate clean energy. In this work, the performance of monocrystalline silicon photovoltaic module is studied through observing the effect of necessary parameters: solar irradiation and ambient temperature. The single diode model with series resistors is selected to find the characterization of current-voltage (I-V) and power-voltage (P-V) curves by determining the values of five parameters ( ). This model shows a high accuracy in modeling the solar PV module under various weather conditions. The modeling is simulated via using MATLAB/Simulink software. The performance of the selected solar PV module is tested experimentally for differ
... Show MoreThe world's population growth and the increasing demand for new infrastructure facilities and buildings , present us with the vision of a higher resources consumption, specially in the form of more durable concrete such as High Performance Concrete (HPC) . Moreover , the growth of the world pollution by plastic waste has been tremendous. The aim of this research is to investigate the change in mechanical properties of HPC with added waste plastics in concrete. For this purpose 2.5%, 5% and 7.5% in volume of natural fine aggregate in the HPC mixes were replaced by an equal volume of Polyethylene Terephthalate (PET) waste , got by shredded PET bottles. The mechanical propert
... Show MoreSeeds of five cultivars of oats (Avena sativa) were introduced from Italy in 2009. Seeds were propagated on the farm of the Dept. of Field Crops Sci. / Coll. of Agric. / Univ. of Baghdad in the season 2009 – 2010. The cultivars Anatolia, Alguda, Hamel, Pimula and Genzania were planted under 3 irrigation intervals; 3, 4 and 5 weeks to give water depth of 480, 400 and 320 mm, respectively . The depth of water was 80 mm each irrigation. A factorial experiment with RCBD of 4 replicates was conducted in 2 consecutive seasons in 2010 – 2011 and 2011 – 2012. The cultivar Alguda gave highest grain yield (8.07 t/ ha) under 480 mm, and 7.02 t / ha average of 3 water depths. This cultivar was characterized by high growth rate (13.2 g/m2/ d) that
... Show MoreThis research aims to test the relation and effect of the process of organizational change as an independent variable (change in human resources, technological change, change in tasks, change in organizational structure) in organizational performance as a variable of success (financial performance, operational performance, customer satisfaction, growth). And learning) in the Office of the province of Baghdad, as well as determine the existence of differences of statistical significance between the variables of research, and then try to come out with a set of recommendations to contribute to the strengthening of organizational performance, and carried out this research on the eye of the vertical number (75) individuals, The
... Show MoreIn recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Ve
... Show More