This study was done to investigate the impact of different nanoparticles on diesel fuel characteristics, Iraqi diesel fuel was supplied from al-Dura refinery and was treated to enhance performance by improving its characteristics. Two types of nanoparticles were mixed with Iraqi diesel fuel at various weight fractions of 30, 60, 90, and 120 ppm. The diesel engine was tested and run at a constant speed of 1600 rpm to examine and evaluate the engine's performance and determine emissions. In general, ZnO additives' performance analysis showed they are more efficient for diesel fuel engines than CeO. The performance of engine diesel fuel tests showed that the weight fraction of nanoparticles at 90 and 120 ppm give a similar performance, so, for economic aspects, the additives at 90 ppm of two types of nanoparticles gave good performance efficiency and the best reduction of gas emissions. The enhancement for ZnO additives is up to 34.28% compared to pure diesel fuel, while for nano CeO, the maximum enhancement is 20% compared to pure diesel fuel. The brake thermal efficiency increases with additives. The best improvements in brake thermal efficiency were 62% for ZnO and 59% for CeO, respectively, both at 120 ppm. A reduction in NOx, CO2, CO and UHC emissions was observed compared with the diesel fuel that was consumed from pure diesel fuel. The maximum reduction emissions values for NOx, CO, CO2 and un-burn hydrocarbon (UHC) were 63.77, 29.26, 56.41, and 57.37 % for ZnO, and 58.11, 37.80, 61.53, and 50.81 % for CeO additives. Therefore, it is recommended to utilize nanoparticles, especially ZnO, as a fuel additive with diesel fuel and consider them as an enhancer material to increase engine efficiency and reduce exhaust emissions.
In this work, CdS/TiO2 nanotubes composite nanofilms were successfully synthesized via electrodeposition technique. TiO2 titania nanotube arrays (NTAs) are commonly used in photoelectrochemical cells as the photoelectrode due to their high surface area, excellent charge transfer between interfaces and fewer interfacial grain boundaries. The anodization technique of titanium foil was used to prepare TiO2 NTAs photoelectrode. The concentration of CdCl2 played an important role in the formation of CdS nanoparticles. Field emission scanning electron microscopy (FESEM) shows that the CdS nanoparticles were well deposited onto the outer and inner of nanotube at 40 mM of CdCl2. X-ray diffraction (XRD) and energy dispersive X-ray (EDX) analyses wer
... Show MoreOndansetron HCl (OND) is a potent antiemetic drug used for control of nausea and vomiting associated with cancer chemotherapy. It exhibits only 60 – 70 % of oral bioavailability due to first pass metabolism and has a relative short half-life of 3-5 hours. Poor bioavailability not only leads to the frequent dosing but also shows very poor patient adherence. Hence, in the present study an approach has been made to develop OND nanoparticles using eudragit® RS100 and eudragit® RL100 polymer to control release of OND for transdermal delivery and to improve patient compliance.
Six formulas of OND nanoparticles were prepared using nanoprecipitation technique. The particles sizes and zeta potential were measured
... Show MoreThin films of In2O3-CdO at various CdO contents (0.01, 0.02, 0.03, 0.04 and 0.05) were deposited on transparent substrate which is glass using chemical spray pyrolysis deposition method at substrate temperature 150oC. The structural properties was studied to characterize the prepared materials by XRD analysis. Surface morphology has been illustrated using scanning electron microscopy which proved the nanosize of prepared materials. This materials have been used as gas sensor for toxic gas which is hydrogen sulfide H2S. The sensitivity and response speed have been investigated with addition of CdO nanoparticles. © 2021, S.C. Virtual Company of Phisics S.R.L. All rights reserved.
Statement of the Problem. The use of orthodontic fixed appliances may adversely affect oral health leading to demineralizing lesions and the development of gingival problems. Aims of the Study. The study aimed to coat orthodontic archwires with chlorhexidine hexametaphosphate nanoparticles (CHX-HMP NPs) and to evaluate the elusion of CHX from CHX-HMP NPs. Materials and Methods. A solution of CHX-HMP nanoparticles with an overall concentration of 5 mM for both CHX and HMP was prepared, characterized (using atomic force microscope and Fourier transformation infrared spectroscopy), and used to coat orthodontic stainless steel (SSW) and NiTi archwires (NiTiW). The coated segments were characterized (using scanning electron microscopy
... Show MoreBackground: Nanoparticles are clusters of atoms in a size range from (1-100) nm. Nano dentistry creates amazing useful structures from individual atoms or molecules (nanoparticles), which provides a new alternative and a possibly superior strategy in prevention and treatment of dental caries through management of dental plaque biofilms. The aim of the study was to test the sensitivity of Streptococcus mutans to different concentrations of hydroxyapatite and iron oxide nanoparticles suspension solutions, in comparison to chlorhexidine, and de-ionized water, in vitro. Materials and methods: Agar well technique was applied to test the sensitivity of Streptococcus mutans to different concentrations of hydroxyapatite and iron oxide nanoparticle
... Show MoreIn this work, copper substituted cobalt ferrite nanoparticles with
chemical formula Co1-xCuxFe2O4 (x=0, 0.3, and 0.7), has been
synthesized via hydrothermal preparation method. The structure of
the prepared materials was characterized by X-ray diffraction (XRD).
The (XRD) patterns showed single phase spinel ferrite structure.
Average crystallite size (D), lattice constant (a), and crystal density
(dx) have been calculated from the most intense peak (311).
Comparative standardization also performed using smaller average
particle size (D) on the XRD patterns of as-prepared ferrite samples
in order to select most convenient hydrothermal synthesis conditions
to get ferrite materials with smallest average particl
Copper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the
... Show MoreMetal oxide nanoparticles demonstrate uniqueness in various technical applications due to their suitable physiochemical properties. In particular, yttrium oxide nanoparticle(Y2O3NPs) is familiar for technical applications because of its higher dielectric constant and thermal stability. It is widely used as a host material for a variety of rare-earth dopants, biological imaging, and photodynamic therapies. In this investigation, yttrium oxide nanoparticles (Y2O3NPs) was used as an ecofriendly corrosion inhibitor through the use of scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FT-IR), UV-Visible spectroscopy, X-ray diffraction (XRD), and energy dispersive X-ray spe
... Show MoreToday technology using nanoparticle when treatment pathogentic microorganism and we focused on this here. It was found that the species of streptococcus used in present study were sensitive to erythromycin. In present study focusing biofilm formation by Streptococcus spp was evaluated. Species S. mutans was found that highest amount of biofilm compare with the other species. The aim of report effect (SNPs) on ability of biofilm form different species of streptococcus. The anti-biofilm effect of SNPs was in concentration dependent manner. The highest effect of SNP against biofilm formation was found the concentration 160 μg/ml, while the lowest effect was found the lowest used concentration (80 μg/ml) of SNPs. In vivo study revealed that s
... Show More