Essential approaches involving photons are among the most common uses of parallel optical computation due to their recent invention, ease of production, and low cost. As a result, most researchers have concentrated their efforts on it. The Basic Arithmetic Unit BAU is built using a three-step approach that uses optical gates with three states to configure the circuitry for addition, subtraction, and multiplication. This is a new optical computing method based on the usage of a radix of (2): a binary number with a signed-digit (BSD) system that includes the numbers -1, 0, and 1. Light with horizontal polarization (LHP) (↔), light with no intensity (LNI) (⥀), and light with vertical polarization (LVP) (↨) is represented by -1, 0, and 1, respectively. This research proposes new processor designs for addition. As a result, the design can achieve m addition operations with an operand length of n bits simultaneously. To explain and justify the theoretical design idea, the three steps of adding a BSD are numerically simulated. The constructing process is thought to be more precise and faster because the time to add does not depend on the length of the word. For all entries, all bits are implemented simultaneously, boosting the system's efficiency. A simulation model for six addition processes with a total bit count of 15 bits across all entries is presented in this work performing in a one-time parallelism manner.
The present study deals with the optimum design of self supporting steel communication towers. A special technique is used to represent the tower as an equivalent hollow tapered beam with variable cross section. Then this method is employed to find the best layout of the tower among prespecified configurations. The formulation of the problem is applied to four types of tower layout
with K and X brace, with equal and unequal panels. The objective function is the total weight of the tower. The variables are the base and the top dimensions, the number of panels for the tower and member's cross section areas. The formulations of design constraints are based on the requirements of EIA and ANSI codes for allowable stresses in the members
Precision is one of the main elements that control the quality of a geodetic network, which defines as the measure of the network efficiency in propagation of random errors. This research aims to solve ZOD and FOD problems for a geodetic network using Rosenbrock Method to optimize the geodetic networks by using MATLAB programming language, to find the optimal design of geodetic network with high precision. ZOD problem was applied to a case study network consists of 19 points and 58 designed distances with a priori deviation equal to 5mm, to determine the best points in the network to consider as control points. The results showed that P55 and P73 having the minimum ellipse of error and considered as control points. FOD problem was applie
... Show MoreSCADA is the technology that allows the operator to gather data from one or more various facilities and to send control instructions to those facilities. This paper represents an adaptable and low cost SCADA system for a particular sugar manufacturing process, by using Programmable Logic Controls (Siemens s7-1200, 1214Dc/ Dc/ Rly). The system will control and monitor the laboratory production line chose from sugar industry. The project comprises of two sections the first one is the hardware section that has been designed, and built using components suitable for making it for laboratory purposes, and the second section was the software as the PLC programming, designing the HMI, creating alarms and trending system. The system will ha
... Show MoreWind energy is considered one of the most important sources of renewable energy in the world, because it contributes to reducing the negative effects on the environment. The most important types of wind turbines are horizontal and vertical axis wind turbines. This work presents the full details of design for vertical axis wind turbine (VAWT) and how to find the optimal values of necessary factors. Additionally, the results shed light on the efficiency and performance of the VAWT under different working conditions. It was taken into consideration the variety of surrounding environmental conditions (such as density and viscosity of fluid, number of elements of the blade, etc.) to simulate the working of vertical wind turbines under di
... Show MoreThis article will address autoclave design considerations and
manufacturing working with high pressure low temperature
supercritical drying technique to produce silica aerogel. The design
elects carbon dioxide as a supercritical fluid (31.7 oC and 72.3 bar).
Both temperature and pressure have independently controlling
facility through present design. The autoclave was light weight (4.5
kg) and factory-made from stainless steel. It contains a high pressure
window for monitoring both transfer carbon dioxide gas to liquid
carbon dioxide and watching supercritical drying via aerogel
preparation process. In this work aerogel samples were prepared and
the true apparent densities, total pore volume and pore size
It has been an increase concern of scientific and professional accounting sides on disclosure especially after appearance of business firms and accounting development with its relationship to financial statements which are considered to be outputs of the activity results. The preparing of financial statements and auditing of those accounts according to normal principles and standards of accounting on both local and international levels. Accounting disclosure can be seen an importance through discover all fundamental and necessary information for proper supply. Therefore, the research will highlight on public companies commitment in Iraq for basis and standards which have taken disclosure in financial data. The conceptual frame of t
... Show More