Preferred Language
Articles
/
joe-1529
Performance Analysis of different Machine Learning Models for Intrusion Detection Systems
...Show More Authors

In recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Vector Machine, Naïve Bayes, Decision Tree, Random Forest, Stochastic Gradient Descent, Gradient Boosting and Ada Boosting classifiers were designed. Performance-wise analysis using Confusion Matrix metric carried out and comparisons between the classifiers were a due. As a case study Information Gain, Pearson and F-test feature selection techniques were used and the obtained results compared to models that use all the features. One unique outcome is that the Random Forest classifier achieves the best performance with an accuracy of 99.96% and an error margin of 0.038%, which supersedes other classifiers. Using 80% reduction in features and parameters extraction from the packet header rather than the workload, a big performance advantage is achieved, especially in online environments.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Oct 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Spatial Regression Models Estimation for the poverty Rates In the districts of Iraq in 2012
...Show More Authors

The research took the spatial autoregressive model: SAR and spatial error model: SEM  in an attempt to provide practical evidence that proves the importance of spatial analysis, with a particular focus on the importance of using regression models spatial and that includes all of the spatial dependence, which we can test its presence or not by using Moran test. While ignoring this dependency may lead to the loss of important information about the phenomenon under research is reflected in the end on the strength of the statistical estimation power, as these models are the link between the usual regression models with time-series models. The spatial analysis had been applied to Iraq Household Socio-Economic Survey: IHS

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Sep 01 2016
Journal Name
2016 8th Computer Science And Electronic Engineering (ceec)
Class-specific pre-trained sparse autoencoders for learning effective features for document classification
...Show More Authors

View Publication
Scopus (6)
Crossref (2)
Scopus Crossref
Publication Date
Thu Feb 28 2019
Journal Name
Journal Of Engineering
Hydraulic Analysis and Performance Evaluation of Combined Trunk Sewers: A Case Study of Baghdad City.
...Show More Authors

Sewer system plays an indispensable task in urban cities by protecting public health and the environment. The operation, maintenance, and rehabilitation of this network have to be in a sustainable and scientific manner. For this purpose, it is important to support operators, decision makers and municipalities with performance evaluation procedure that is based on operational factors. In this paper, serviceability and performance indicator (PI) principles are employed to propose methodology comprising two enhanced PI curves that can be used to evaluate the individual sewers depending on operational factors such as flowing velocity and wastewater level in the sewers. In order to test this methodology; a case study of al-Ru

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Oct 01 2019
Journal Name
Journal Of Engineering
Hydraulic Analysis and Performance Evaluation of Combined Trunk Sewers: a Case Study of Baghdad City.
...Show More Authors

Sewer system plays an essential task in urban cities by protecting public health and the environment. The operation, maintenance, and rehabilitation of this network have to be sustainable and scientifically. For this purpose, it is crucial to support operators, decision makers and municipalities with performance evaluation procedure that is based on operational factors. In this paper, serviceability and performance indicator (PI) principles are employed to propose methodology comprising two enhanced PI curves that can be used to evaluate the individual sewers depending on operational factors such as flowing velocity and wastewater level in the sewers. To test this methodology; a case study of al-Rusafa in Baghdad city is

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Mar 13 2025
Journal Name
Academia Open
Deep Learning and Fusion Techniques for High-Precision Image Matting:
...Show More Authors

General Background: Deep image matting is a fundamental task in computer vision, enabling precise foreground extraction from complex backgrounds, with applications in augmented reality, computer graphics, and video processing. Specific Background: Despite advancements in deep learning-based methods, preserving fine details such as hair and transparency remains a challenge. Knowledge Gap: Existing approaches struggle with accuracy and efficiency, necessitating novel techniques to enhance matting precision. Aims: This study integrates deep learning with fusion techniques to improve alpha matte estimation, proposing a lightweight U-Net model incorporating color-space fusion and preprocessing. Results: Experiments using the AdobeComposition-1k

... Show More
View Publication Preview PDF
Publication Date
Thu Jun 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
An optimized deep learning model for optical character recognition applications
...Show More Authors

The convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sat Jan 25 2020
Journal Name
Indian Journal Of Forensic Medicine & Toxicology
A Stereomicroscopic Analysis of Dentinal Micro Cracks after Root Canal Preparation Using Four Different Rotary Instruments.
...Show More Authors

A variety of single-engine driven files and inematics have been introduced to improve the clinical performance of NiTi rotary files. The purpose of this in vitro study was to measure and compare the incidence of dentinal defects after root canal preparation with different single file systems.

View Publication
Crossref
Publication Date
Sun Mar 02 2008
Journal Name
Baghdad Science Journal
Calculations of Signal to Noise Ratio (SNR) for Free Space Optical Communication Systems
...Show More Authors

In this paper, we calculate and measure the SNR theoretically and experimental for digital full duplex optical communication systems for different ranges in free space, the system consists of transmitter and receiver in each side. The semiconductor laser (pointer) was used as a carrier wave in free space with the specification is 5mW power and 650nm wavelength. The type of optical detector was used a PIN with area 1mm2 and responsively 0.4A/W for this wavelength. The results show a high quality optical communication system for different range from (300-1300)m with different bit rat (60-140)kbit/sec is achieved with best values of the signal to noise ratio (SNR).

View Publication Preview PDF
Crossref
Publication Date
Fri May 18 2018
Journal Name
International Journal Of Simulation: Systems, Science & Technology
A Review of Advances in Pressurizer Response Research for Pressurized Water Reactor Systems
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Tue Oct 02 2018
Journal Name
Iraqi Journal Of Physics
The efficiency calibration for local manufacturing gamma scanning systems of radioactive waste drums
...Show More Authors

The Local manufacturing scanning gamma system designed in Tuwaitha site for nondestructive assay method of radioactive waste drums, where it consist of two main parts with their belongings for controlling the of detector and drum movements up-down and rotation respectively. The volume of the used drum is 220 L with 85 cm height. The drum filled with Portland cement. Six cylindrical holes were made within cement drum and distributed in radial arrangement.The152Eu source inserted in these holes individually, to measure the average angular count rate of gamma radiation. The full energy efficiency value for geometry of drum and detector is computed for thirteen photo peaks. The average efficiency represented by the curve of these peaks indic

... Show More
View Publication Preview PDF
Crossref