In recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Vector Machine, Naïve Bayes, Decision Tree, Random Forest, Stochastic Gradient Descent, Gradient Boosting and Ada Boosting classifiers were designed. Performance-wise analysis using Confusion Matrix metric carried out and comparisons between the classifiers were a due. As a case study Information Gain, Pearson and F-test feature selection techniques were used and the obtained results compared to models that use all the features. One unique outcome is that the Random Forest classifier achieves the best performance with an accuracy of 99.96% and an error margin of 0.038%, which supersedes other classifiers. Using 80% reduction in features and parameters extraction from the packet header rather than the workload, a big performance advantage is achieved, especially in online environments.
Warm mix asphalt (WMA) is relatively a new technology which enables the production and compaction of asphalt concrete mixtures at temperatures 15-40 °C lower than that of traditional hot mix asphalt HMA. In the present work, six asphalt concrete mixtures were produced in the mix plant (1 ton each) in six different batches. Half of these mixes were WMA and the other half were HMA. Three types of fillers (limestone dust, Portland cement and hydrated lime) were used for each type of mix. Samples were then taken from these patches and transferred to lab for performance testing which includes: Marshall characteristics, moisture susceptibility (indirect tension test), resilient modulus, permanent deformation (axial repe
... Show MoreWarm mix asphalt (WMA) is relatively a new technology which enables the production and compaction of asphalt concrete mixtures at temperatures 15-40 °C lower than that of traditional hot mix asphalt HMA. In the present work, six asphalt concrete mixtures were produced in the mix plant (1 ton each) in six different batches. Half of these mixes were WMA and the other half were HMA. Three types of fillers (limestone dust, Portland cement and hydrated lime) were used for each type of mix. Samples were then taken from these patches and transferred to lab for performance testing which includes: Marshall characteristics, moisture susceptibility (indirect tension test), resilient modulus, permanent deformation (axial repeated load test)
... Show MoreA new simple and sensitive spectrophotometric method is described for quantification of Nifedipine (NIF) and their pharmaceutical formulation. The selective method was performed by the reduction of NIF nitro group to yield primary amino group using zinc powder with hydrochloric acid. The produced aromatic amine was submitted to oxidative coupling reaction with pyrocatechol and ammonium ceric nitrate to form orange color product measured spectrophotometrically with maximum absorption at 467nm. The product was determined through flow injection analysis (FIA) system and all the chemical and physical parameters were optimized. The concentration range from 5.0 to 140.0 μg.mL-1 was obeyed Beer’s law with a limit of detection and quantitatio
... Show MoreA two-year study (harvest years 2019 and 2020) was conducted to investigate the effect of a commercially available biofertilizer, in combination with variable nitrogen (N) rate, on bread baking quality and agronomic traits in hard winter wheat grown in conventional (CONV) and organic (ORG) farming systems in Kentucky, USA. The hard red winter wheat cultivar ‘Vision 45’ was used with three N rates (44, 89.6 and 134.5 kg/ha as Low, Med and High, respectively) and three biofertilizer spray regimes (no spray, one spray and two sprays). All traits measured were significantly affected by the agricultural production system (CONV or ORG) and N rate, although trends in their interactions were inconsistent between years. In Y2, yield was
... Show MoreIn this study, we tackle the understudied area of Artificial Intelligence (AI) and its role in examining how modern revolutions may affect political systems across the Middle Eastern region. despite hundreds of studies documenting Middle Eastern uprisings over the past three decades, there has been little effort to harness AI to better understand or predict these multifaceted events. This study seeks to address this gap by assessing the performance of AI-intelligence in analyzing (broadly) revolutionary processes and their effects on regional political systems. The research uses a mixedmethod methodology that involves a systematic literature review of contemporary scholarly articles, and an analytics study using AI tools. Our results show t
... Show MoreAbstract
The current research aims at identifying any of the dimensions of organizational learning abilities that are more influential in the knowledge capital of the university and the extent to which they can be applied effectively at Wasit University. The current research dealt with organizational learning abilities as an explanatory variable in four dimensions (Experimentation and openness, sharing and transfer of knowledge, dialogue, interaction with the external environment ), and knowledge capital as a transient variable, with four dimensions (human capital, structural capital, client capital, operational capital). The problem of research is the following questio
... Show MoreBackground: disruptive behavioral disorders among primary school children is oone of the most popular, which has negative social, psychological, educational, and physical repercussions on children and families. Objective: This study sought to determine effect disruptive behavioral disorders quality of learning among school chil dren. Methods: A descriptive cross-sectional design study was conducted at Baquba primary schools in Diyala Governorate, and the study period was extended from October 6th, 2024, to January 15th, 2025. A nonprobability purposive sample was used to include 275 teachers working at selected Baquba primary schools, Iraq. Data were collected using a self-admin istered questionnaire, two components of the st
... Show More