Preferred Language
Articles
/
joe-1524
Prediction of Shear Strength Parameters of Gypseous Soil using Artificial Neural Networks
...Show More Authors

The shear strength of soil is one of the most important soil properties that should be identified before any foundation design. The presence of gypseous soil exacerbates foundation problems. In this research, an approach to forecasting shear strength parameters of gypseous soils based on basic soil properties was created using Artificial Neural Networks. Two models were built to forecast the cohesion and the angle of internal friction. Nine basic soil properties were used as inputs to both models for they were considered to have the most significant impact on soil shear strength, namely: depth, gypsum content, passing sieve no.200, liquid limit, plastic limit, plasticity index, water content, dry unit weight, and initial voids ratio. Multi-layer perceptron training by the backpropagation algorithm was used in creating the network. It was found that both models can predict shear strength parameters for gypseous soils with good reliability. Sensitivity analysis of the first model indicated that dry unit weight and plasticity index have the most significant effect on the predicted cohesion. While in the second model, the results indicated that the gypsum content and plasticity index have the most significant effect on the predicted angle of internal friction.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Dec 26 2017
Journal Name
Al-khwarizmi Engineering Journal
Optimization of Wear Parameters in AISI 4340 Steel
...Show More Authors

Abstract

 This study investigated the optimization of wear behavior of AISI 4340 steel based on the Taguchi method under various testing conditions. In this paper, a neural network and the Taguchi design method have been implemented for minimizing the wear rate in 4340 steel. A back-propagation neural network (BPNN) was developed to predict the wear rate. In the development of a predictive model, wear parameters like sliding speed, applying load and sliding distance were considered as the input model variables of the AISI 4340 steel. An analysis of variance (ANOVA) was used to determine the significant parameter affecting the wear rate. Finally, the Taguchi approach was applied to determine

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Investigation of Effecting Parameters in a Turning Operation
...Show More Authors

        In this study multi objective optimization is utilized to optimize a turning operation to reveal the appropriate level of process features. The goal of this work is to evaluate the optimal combination of cutting parameters like feed, spindle speed, inclination angle and workpiece material to have a best surface quality Taguchi technique L9 mixed orthogonal array, has been adopted to optimize the roughness of surface. Three rods of length around (200 mm) for the three metals are used for this work. Each rod is divided into three parts with 50 mm length. For brass the optimum parametric mix for minimum Ra is A1, B1 and C3, i.e., at tool inclination angle (5), feedrate of 0.01, spindle speed of 120

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Oct 01 2010
Journal Name
Iraqi Journal Of Physics
Correlation of Paschen parameters in magnetized argon plasma
...Show More Authors

A number of glow discharge experiments has been carried out in a relatively large-volume metallic vacuum chamber containing argon at low pressure and immersed in an inhomogeneous magnetic field generated by a solenoidal coil capable of delivering 2100G. Two Paschen curves demonstrating the dependence of the discharge voltage on sparking parameter Pd and magnetic field strength B were deduced. A graphical correlation showing the behaviour of the voltage difference from the two curves on the ratio B/Pd was constructed. Investigations showed a reduction in the nominal impedance of the discharge device of nearly 20% when B reaches a value of 525G. Plasma confinement regions were found around the internal surface of the chamber at the entranc

... Show More
View Publication Preview PDF
Publication Date
Sun Aug 01 2021
Journal Name
Laser Micro- And Nano-scale Processing
Effective working parameters of laser micro-/nano-machining
...Show More Authors

Modern emerged technologies impose development and fabrication of miniatur-ized parts and devices in the micro- and nano-scale. Producing micro- and nano-featured structures requires nonconventional machining processes where con-ventional machining processes such as grinding, milling and eroding have failed. New emerging processes, such laser machining processes, are still fraught with almost invincible processes. Micro-/nano-machining are the pro-cesses of producing parts, microsystems or features at a scale of a few microm-eters and less than one hundred nanometers, respectively. Precise cutting and clean material removal accompanied with a negligible heat affected zone (HAZ), which are usually the characteristics of laser ablation, have

... Show More
View Publication
Crossref
Publication Date
Mon Mar 29 2021
Journal Name
Journal Of Engineering
Extracting Four Solar Model Electrical Parameters of Mono-Crystalline Silicon (mc-Si) and Thin Film (CIGS) Solar Modules using Different Methods
...Show More Authors

Experimental measurements were done for characterizing current-voltage and power-voltage of two types of photovoltaic (PV) solar modules; monocrystalline silicon (mc-Si) and copper indium gallium di-selenide (CIGS). The conversion efficiency depends on many factors, such as irradiation and temperature. The assembling measures as a rule cause contrast in electrical boundaries, even in cells of a similar kind. Additionally, if the misfortunes because of cell associations in a module are considered, it is hard to track down two indistinguishable photovoltaic modules. This way, just the I-V, and P-V bends' trial estimation permit knowing the electrical boundaries of a photovoltaic gadget with accuracy. This measure

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Thu Oct 18 2018
Journal Name
Lambert Academic Publishing
Mathematical Models For Contamination Soil
...Show More Authors

ENGLISH

Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Robotics And Control (jrc)
Automated Stand-alone Surgical Safety Evaluation for Laparoscopic Cholecystectomy (LC) using Convolutional Neural Network and Constrained Local Models (CNN-CLM)
...Show More Authors

In this golden age of rapid development surgeons realized that AI could contribute to healthcare in all aspects, especially in surgery. The aim of the study will incorporate the use of Convolutional Neural Network and Constrained Local Models (CNN-CLM) which can make improvement for the assessment of Laparoscopic Cholecystectomy (LC) surgery not only bring opportunities for surgery but also bring challenges on the way forward by using the edge cutting technology. The problem with the current method of surgery is the lack of safety and specific complications and problems associated with safety in each laparoscopic cholecystectomy procedure. When CLM is utilize into CNN models, it is effective at predicting time series tasks like iden

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Fri Dec 29 2023
Journal Name
International Journal Of Nanoscience
Detection of Silica in Rice Husks Using Laser-Induced Plasma and Studying the Effect of Laser Energy on the Parameters of the Produced Plasma
...Show More Authors

This study aims to analyze the spectral properties of plasma produced from rice husk(Rh) using the laser breakdown spectroscopy (LIBS) method. The plasma generation process used the fundamental harmonic (1064 nm) of a Q-switched Nd:YAG laser. Yttrium aluminum garnet (YAG) is a man-made crystalline material. The laser fired pulses with a duration of 10 ns and a repetition rate of 6 Hz. Thus, the energy outputs achieved were 50–200 mJ at the wavelength of 1064 (nm). The silica content in the rice hulls was verified using an XRF measurement, which revealed the presence of silica in the rice hulls in a high percentage. Precise beam focusing was achieved by focusing the laser on the target material. This target material is placed with

... Show More
View Publication
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Sat Aug 03 2024
Journal Name
Proceedings Of Ninth International Congress On Information And Communication Technology
Offline Signature Verification Based on Neural Network
...Show More Authors

The investigation of signature validation is crucial to the field of personal authenticity. The biometrics-based system has been developed to support some information security features.Aperson’s signature, an essential biometric trait of a human being, can be used to verify their identification. In this study, a mechanism for automatically verifying signatures has been suggested. The offline properties of handwritten signatures are highlighted in this study which aims to verify the authenticity of handwritten signatures whether they are real or forged using computer-based machine learning techniques. The main goal of developing such systems is to verify people through the validity of their signatures. In this research, images of a group o

... Show More
Publication Date
Wed Jan 01 2025
Journal Name
Journal Of Intelligent Systems And Internet Of Things
Enhancing Convolutional Neural Network for Image Retrieval
...Show More Authors

With the continuous progress of image retrieval technology, the speed of searching for the required image from a large amount of image data has become an important issue. Convolutional neural networks (CNNs) have been used in image retrieval. However, many image retrieval systems based on CNNs have poor ability to express image features. Content-based Image Retrieval (CBIR) is a method of finding desired images from image databases. However, CBIR suffers from lower accuracy in retrieving images from large-scale image databases. In this paper, the proposed system is an improvement of the convolutional neural network for greater accuracy and a machine learning tool that can be used for automatic image retrieval. It includes two phases

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref