Preferred Language
Articles
/
joe-150
Calculating the Transport Density Index from Some of the Productivity Indicators for Railway Lines by Using Neural Networks
...Show More Authors

The efficiency evaluation of the railway lines performance is done through a set of indicators and criteria, the most important are transport density, the productivity of enrollee, passenger vehicle production, the productivity of freight wagon, and the productivity of locomotives. This study includes an attempt to calculate the most important of these indicators which transport density index from productivity during the four indicators, using artificial neural network technology. Two neural networks software are used in this study, (Simulnet) and (Neuframe), the results of second program has been adopted. Training results and test to the neural network data used in the study, which are obtained from the international information network has showed that the error rate in the training and the testing process was about (10%) and that the results of the network query has given the results of acceptable accuracy statistically so that it was better than results obtained from multiple linear regression equation for the same data.

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Feb 01 2023
Journal Name
Baghdad Science Journal
Retrieving Encrypted Images Using Convolution Neural Network and Fully Homomorphic Encryption
...Show More Authors

A content-based image retrieval (CBIR) is a technique used to retrieve images from an image database. However, the CBIR process suffers from less accuracy to retrieve images from an extensive image database and ensure the privacy of images. This paper aims to address the issues of accuracy utilizing deep learning techniques as the CNN method. Also, it provides the necessary privacy for images using fully homomorphic encryption methods by Cheon, Kim, Kim, and Song (CKKS). To achieve these aims, a system has been proposed, namely RCNN_CKKS, that includes two parts. The first part (offline processing) extracts automated high-level features based on a flatting layer in a convolutional neural network (CNN) and then stores these features in a

... Show More
View Publication Preview PDF
Scopus (16)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Journal Of Engineering
Mobile position estimation using artificial neural network in CDMA cellular systems
...Show More Authors

Using the Neural network as a type of associative memory will be introduced in this paper through the problem of mobile position estimation where mobile estimate its location depending on the signal strength reach to it from several around base stations where the neural network can be implemented inside the mobile. Traditional methods of time of arrival (TOA) and received signal strength (RSS) are used and compared with two analytical methods, optimal positioning method and average positioning method. The data that are used for training are ideal since they can be obtained based on geometry of CDMA cell topology. The test of the two methods TOA and RSS take many cases through a nonlinear path that MS can move through that region. The result

... Show More
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
Offline Signature Biometric Verification with Length Normalization using Convolution Neural Network
...Show More Authors

Offline handwritten signature is a type of behavioral biometric-based on an image. Its problem is the accuracy of the verification because once an individual signs, he/she seldom signs the same signature. This is referred to as intra-user variability. This research aims to improve the recognition accuracy of the offline signature. The proposed method is presented by using both signature length normalization and histogram orientation gradient (HOG) for the reason of accuracy improving. In terms of verification, a deep-learning technique using a convolution neural network (CNN) is exploited for building the reference model for a future prediction. Experiments are conducted by utilizing 4,000 genuine as well as 2,000 skilled forged signatu

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Jun 27 2023
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Evaluating the Benefits of Using Mobile Application (diarrhea management step by step) in the Management of Diarrhea by Community Pharmacists
...Show More Authors

Diarrhea is one of the most commonly encountered minor ailments in the community pharmacies. It is associated with significant morbidity and mortality. However, the majority of pharmacists in Iraq did not manage diarrheal cases in a proper way. Therefore, the current study aimed to evaluate the benefit of a new mobile application (diarrhea management step by step) to improve the pharmacist's role in the management of diarrhea. The study was conducted from 21th September to 21th October 2021 using a pre-post design via a simulated patient (SP) technique. A validated diarrhea scenario was presented to each pharmacist by the SP twice, once before and the other after giving the mobile application to the pharmacist. Furthermore, pharmaci

... Show More
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Tue Aug 01 2023
Journal Name
Iop Conference Series: Earth And Environmental Science
Sustainability of Agricultural Productivity of Potato Crop in Desert Soils and Evaluation of Water Productivity Under Drip Irrigation System with Future Climate Changes
...Show More Authors

A field experiment was conducted during the spring season 2020 in Karbala proving/ Al-Sharia Distrit, located at latitude N 32° 42' 13.8" and longitude E 43° 54' 36.6" and at an altitude of 27 m above sea level. The experiment included a study of two factors: the first, Irrigation Interval, three treatments were used: irrigation treatment every 2 days, Irrigation treatment every 4 days, and Irrigation treatment every 6 days. The second factor is the addition of soil conditioners, in which four treatments were used: the control treatment without any addition, the treatment of adding bio-organic fertilizers, the treatment of adding water-conserving technology (polymer), and the treatment of adding water-conserving technology + fertilizers O

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Thu Apr 01 2021
Journal Name
Complexity
Bayesian Regularized Neural Network Model Development for Predicting Daily Rainfall from Sea Level Pressure Data: Investigation on Solving Complex Hydrology Problem
...Show More Authors

Prediction of daily rainfall is important for flood forecasting, reservoir operation, and many other hydrological applications. The artificial intelligence (AI) algorithm is generally used for stochastic forecasting rainfall which is not capable to simulate unseen extreme rainfall events which become common due to climate change. A new model is developed in this study for prediction of daily rainfall for different lead times based on sea level pressure (SLP) which is physically related to rainfall on land and thus able to predict unseen rainfall events. Daily rainfall of east coast of Peninsular Malaysia (PM) was predicted using SLP data over the climate domain. Five advanced AI algorithms such as extreme learning machine (ELM), Bay

... Show More
View Publication
Scopus (20)
Crossref (16)
Scopus Clarivate Crossref
Publication Date
Thu Jan 11 2018
Journal Name
Al-khwarizmi Engineering Journal
Control on a 2-D Wing Flutter Using an Adaptive Nonlinear Neural Controller
...Show More Authors

An adaptive nonlinear neural controller to reduce the nonlinear flutter in 2-D wing is proposed in the paper. The nonlinearities in the system come from the quasi steady aerodynamic model and torsional spring in pitch direction. Time domain simulations are used to examine the dynamic aero elastic instabilities of the system (e.g. the onset of flutter and limit cycle oscillation, LCO). The structure of the controller consists of two models :the modified Elman neural network (MENN) and the feed forward multi-layer Perceptron (MLP). The MENN model is trained with off-line and on-line stages to guarantee that the outputs of the model accurately represent the plunge and pitch motion of the wing and this neural model acts as the identifier. Th

... Show More
View Publication Preview PDF
Publication Date
Tue Nov 17 2020
Journal Name
Annals Of Tropical Medicine And Public Health
Correlation Study of Aromatase, Some Sex Hormones, and Body Mass Index Among Iraqi Patients with Polycystic Ovary Syndrome
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Thu Nov 21 2019
Journal Name
Journal Of Engineering
Simple 2D chaotic remapping scheme for securing optical communication networks
...Show More Authors

In this work, a simple and new method is proposed to simultaneously improve the physical layer security and the transmission performance of the optical orthogonal frequency division multiplexing system, by combining orthogonal frequency division multiplexing technique with chaotic theory principles. In the system, a 2-D chaotic map is employed. The introduced system replaces complex operations such as matrix multiplication with simple operations such as multiplexing and inverting. The system performance in terms of bit error rate (BER) and peak to average ratio (PAPR) is enhanced. The system is simulated using Optisystem15 with a MATLAB2016 and for different constellations. The simulation results showed that the  BE

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sun Dec 01 2019
Journal Name
Al-nahrain Journal Of Science
Enhancing Sparse Adjacency Matrix for Community Detection in Large Networks
...Show More Authors

View Publication
Crossref (1)
Crossref