Preferred Language
Articles
/
joe-1471
Effect of Distributing Steel Fibers on Some Properties of Slurry Infiltrated Fiber Concrete
...Show More Authors

The slurry infiltrated fiber concrete (SIFCON) is nowadays considered a special type of high fiber content concrete; it is high strength and high performance material. This paper investigates the effect of spread steel fiber into the slurry mortar on some properties of SIFCON. According to fiber distribution, two sets were used in this investigation. The first set consisted of randomly distributing fibers inside the slurry. The second set was by placing the fibers in an orderly manner inside the slurry. Crimped steel fibers with an aspect ratio of (60) were used. Two different volume fractions percentage of (7% and 9%) by volume of mold were used in both sets for this study. Also, a w/c ratio of (0.35) and superplasticizer of (1%) by weight of cement was used to ensure the penetration of the slurry inside the fibers. The compressive and flexural strength were conducted on standard cubes (10*10*10) cm and prisms of (40*7*7) cm respectively to find the effect of how the steel fibers were distributed. The results showed that distributing the fibers randomly gave better results than the ordered distribution. The increment percentage in compressive strength and flexural strength were (1.5%, 6.9%, 23%, and 6.5%), respectively, for both sets and both fiber volume fractions (7% and 9%).

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Dec 28 2017
Journal Name
Al-khwarizmi Engineering Journal
The Effect of Increasing Carbon Concentration Increasing on the Mechanical Properties of TiCx Thin Films
...Show More Authors

Carbides or nitrides thin films present materials with good mechanical properties for industrial applications as they can be coatings at low temperatures serve temperature sensitive surfaces. In this work the effect of the C percentage on the mechanical properties represented by the Young modulus (E) of combinatorial magnetron sputtered TiCx (34%x˂65%) has been studied. The structure of the produced films is TiC independent on the C concentration. The mechanical properties are increased with increasing the C concentration up to 50%, and then decreasing with further C % increasing. These results can be explained by considering the resultant residual stresses.

View Publication Preview PDF
Publication Date
Sun Dec 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Effect of Laser Shock Peening on the Fatigue Behavior and Mechanical Properties of Composite Materials
...Show More Authors

In this study, Laser Shock Peening (LSP) effect on the polymeric composite materials has been investigated experimentally. Polymeric composite materials are widely used because they are easy to fabricate and have many attractive features. Unsaturated polyester resin as a matrix was selected and Aluminum powder with micro particles as a reinforcement material was used with different volume fraction (2.5%, 5% and 7.5%). Hand lay-up process was used for preparation the composites. Fatigue test with constant amplitude with stress ratio (R =-1) was carried out before and after LSP process with two levels of energy (1Joule and 2Joule). The result showed an increase in the endurance strength of 25.448% at 7.5% volume fraction when peened is 1J

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Al-khwarizmi Engineering Journal
The Effect of Walled Nano-Carbon on the Physical, Thermal and Mechanical Properties of Epoxy
...Show More Authors

The physical, the thermal and the mechanical properties of Nano-composites, that consisted of Polyprime EP epoxy that reinforced by multi-walled carbon nanotubes (MWCNTs), have been studied. Various loading ratios, 0.1, 0.5, and 1 wt. %of MWCNT shave been infused into epoxy by a magnetic stirrer and then the hardener mixed with the mthat supplied with the epoxy. All sample shave been cutting using CNC machine. Tensile test, three-point bending, hardness tests, lee's disk, differential scanning calorimetry, water absorption and dielectric and electrical conductivity test were utilized on unfilled, MWCNT-filled epoxy to identify the loading effect on the properties of materials. Scanning electron microscopy (SEM) was used to determine the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Aug 01 2023
Journal Name
Baghdad Science Journal
The Effect of Electrospinning Parameters on Morphological and Mechanical Properties of PAN-based Nanofibers Membrane
...Show More Authors

The electrospun nanofibers membranes (ENMs) have gained great attention due to their superior performance. However, the low mechanical strength of ENMs, such as the rigidity and low strength, limits their applications in many aspects which need adequate strength, such as water filtration. This work investigates the impact of electrospinning parameters on the properties of ENMs fabricated from polyacrylonitrile (PAN) solved in N, N-Dimethylformamide (DMF). The studied electrospinning parameters were polymer concentration, solution flow rate, collector rotating speed, and the distance between the needle and collector. The fabricated ENMs were characterized using scanning electron microscopy (SEM) to understand the surface morphology and es

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (4)
Scopus Crossref
Publication Date
Tue Feb 13 2018
Journal Name
Chemistry Central Journal
Effect of crosslinking concentration on properties of 3-(trimethoxysilyl) propyl methacrylate/N-vinyl pyrrolidone gels
...Show More Authors

View Publication
Scopus (38)
Crossref (35)
Scopus Clarivate Crossref
Publication Date
Thu Mar 14 2019
Journal Name
Al-khwarizmi Engineering Journal
Cellulose Fibers Dissolution in Alkaline Solution
...Show More Authors

In this study, NaOH dissolution method was applied to dissolve cellulose fibers which extracted from date palm fronds (type Al-Zahdi) taken from Iraqi gardens. In this process, (NaOH)-solution is brought into contact with the cellulose fibers at low temperature. Experiments were conducted with different concentrations of NaOH (4%, 6%, 8% and12%) weight percent at two cooling bath temperatures (-15 oC) and (-20oC). Maximum cellulose dissolution was 23 wt% which obtained at 8 wt% concentration of NaOH and at cooling bath temperature of -20oC. In order to enhance the cellulose fibers dissolution, the sample was pretreated with Fenton's reagent which consists of hydrogen peroxide (H2O2), oxalic acid (C2H2O4) and ferrous sulfate (FeSO4). This

... Show More
Crossref (4)
Crossref
Publication Date
Sun Jan 02 2022
Journal Name
Al-khwarizmi Engineering Journal
Cellulose Fibers Dissolution in Alkaline Solution
...Show More Authors

In this study, NaOH dissolution method was applied to dissolve cellulose fibers which extracted from date palm fronds (type Al-Zahdi) taken from Iraqi gardens. In this process, (NaOH)-solution is brought into contact with the cellulose fibers at low temperature. Experiments were conducted with different concentrations of NaOH (4%, 6%, 8% and12%) weight percent at two cooling bath temperatures (-15 oC) and (-20oC). Maximum cellulose dissolution was 23 wt% which obtained at 8 wt% concentration of NaOH and at cooling bath temperature of -20oC. In order to enhance the cellulose fibers dissolution, the sample was pretreated with Fenton's reagent which consists of

... Show More
View Publication Preview PDF
Publication Date
Thu Mar 14 2019
Journal Name
Al-khwarizmi Engineering Journal
Cellulose Fibers Dissolution in Alkaline Solution
...Show More Authors

In this study, NaOH dissolution method was applied to dissolve cellulose fibers which extracted from date palm fronds (type Al-Zahdi) taken from Iraqi gardens. In this process, (NaOH)-solution is brought into contact with the cellulose fibers at low temperature. Experiments were conducted with different concentrations of NaOH (4%, 6%, 8% and12%) weight percent at two cooling bath temperatures (-15 oC) and (-20oC). Maximum cellulose dissolution was 23 wt% which obtained at 8 wt% concentration of NaOH and at cooling bath temperature of -20oC. In order to enhance the cellulose fibers dissolution, the sample was pretreated with Fenton's reagent which consists of

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Wed Nov 28 2018
Journal Name
International Journal Of Engineering & Technology
Crude Oil Effect on the Clayey Soil Mechanical and Physical Properties
...Show More Authors

Soil defilement with "raw petroleum" is a standout amongst the most across the board and genuine ecological issues going up against both the industrialized and oil country like Iraq. Along these lines, the impact of "raw petroleum" on soil contamination is one of most critical subjects that review these days. The present examination expects to research "unrefined oil"effectson the mechanical and physical properties of clayey soils. The dirt examples were acquired from Al-Doura area in Baghdad city and arranged by the "Brought together Soil Grouping Framework (USCS)" as silty mud of low pliancy (CL). Research center tests were done on contaminated and unpolluted soil tests with same thickness. The dirtied tests are set up by blending

... Show More
View Publication
Crossref (7)
Crossref
Publication Date
Fri Mar 01 2019
Journal Name
Iraqi Journal Of Physics
The effect of rear earth doping CdS nanostructure on structural, optical and photoconductivity properties
...Show More Authors

Rare earth elements (Cerium, Lanthanum and Neodymium) doped CdS thin films are prepared using the chemical Spray Pyrolysis Method with temperature 200 oC. The X-ray diffraction (XRD) analysis refers that pure CdS and CdS:Ce, CdS:La and CdS:Nd thin films showed the hexagonal crystalline phase. The crystallite size determined by the Debye-Scherrer equation and the range was (35.8– 23.76 nm), and it was confirmed by field emission scanning electron microscopy (FE-SEM). The pure and doped CdS shows a direct band gap (2.57 to 2.72 eV), which was obtained by transmittance. The room-temperature photoluminescence of pure and doped CdS shows large peak at 431 nm, and two small peaks at (530 and 610 nm). The Current – voltage measurement in da

... Show More
View Publication Preview PDF
Crossref (1)
Crossref