This research is devoted to investigating the thermal buckling analysis behaviour of laminated composite plates subjected to uniform and non-uniform temperature fields by applying an analytical model based on a refined plate theory (RPT) with five unknown independent variables. The theory accounts for the parabolic distribution of the transverse shear strains through the plate thickness and satisfies the zero-traction boundary condition on the surface without using shear correction factors; hence a shear correction factor is not required. The governing differential equations and associated boundary conditions are derived by using the virtual work principle and solved via Navier-type analytical procedure to obtain critical buckling temperature. Results are presented for: uniform and linear cross-ply lamination with symmetry and antisymmetric stacking, simply supported boundary condition, different aspect ratio (a/b), various orthogonality ratio (E1/E2), varying ratios of coefficient of uniform and linear thermal expansion (α2⁄α1), uniform and linearly varying temperature thickness ratio (a/h) and numbers of layers on thermal buckling of the laminated plate. It can be concluded that this theory gives good results compared to other theories.
This paper presents thermal characteristics analysis of a modified Closed Wet Cooling Tower (CWCT) based on heat and mass transfer principles to improve the performance of this tower in Iraq. A prototype of CWCT optimized by added packing was designed, manufactured and tested for cooling capacity of 9 kW. Experiments are conducted to explore the effects of various operational and conformational parameters on the thermal performance. In the test section, spray water temperature and both dry bulb temperature and relative humidity of the air measured at intermediate points of the heat exchanger and packing. Heat exchangers consist of four rows and eight columns for an inline tubes arrangement and six rows and five columns f
... Show MoreDynamic Thermal Management (DTM) emerged as a solution to address the reliability challenges with thermal hotspots and unbalanced temperatures. DTM efficiency is highly affected by the accuracy of the temperature information presented to the DTM manager. This work aims to investigate the effect of inaccuracy caused by the deep sub-micron (DSM) noise during the transmission of temperature information to the manager on DTM efficiency. A simulation framework has been developed and results show up to 38% DTM performance degradation and 18% unattended cycles in emergency temperature under DSM noise. The finding highlights the importance of further research in providing reliable on-chip data transmission in DTM application.
A numerical simulation is made on the thermal lensing effect in an laser diode end-pumped Nd:YAG laser rod. Based on finite element method (FEM), the laser rod temperature distribution is calculated and the focal length is deduced for a Gaussian and super-Gaussian pump beam profiles.
At the pump power of 20W, the highest temperature located at the center of end-pumped face was 345K, and the thermal lens focal length was 81.4mm along the x-z axis.
The results indicate that the thermal lensing effect sensitively depend on the pump power, waist radius of the pump beam and the pump distribution in a laser rod geometry.
The present work covers the analytical design process of three dimensional (3-D) hip joint prosthesis with numerical fatigue stress analysis. The analytical generation equations describing the different stem constructive parts (ball, neck, tour, cone, lower ball) have been presented to reform the stem model in a mathematical feature. The generated surface has been introduced to FE solver (Ansys version 11) in order to simulate the induced dynamic stresses and investigate the effect of every design parameter (ball radius, angle of neck, radius of neck, neck ratio, main tour radius, and outer tour radius) on the max. equivalent stresses for hip prosthesis made from titanium alloy. The dynamic loading case has been studied to a stumbling ca
... Show MoreThe experimental and numerical analysis was performed on pipes suffering large plastic deformation through expanding them using rigid conical shaped mandrels, with three different cone angles (15◦, 25◦, 35◦) and diameters (15, 17, 20) mm. The experimental test for the strain results investigated the expanded areas. A numerical solution of the pipes expansion process was also investigated using the commercial finite element software ANSYS. The strains were measured for each case experimentally by stamping the mesh on the pipe after expanding, then compared with Ansys results. No cracks were generated during the process with the selected angles. It can be concluded that the strain decreased with greater angles of con
... Show MoreThis study deals with the aircraft wing analysis (numerical and experimental) which subjected to fatigue loading in order to analyze the aircraft wing numerically by using ANSYS 15.0 software and experimentally by using loading programs which effect on fatigue test specimens at laboratory to estimate life of used metal (aluminum alloy 7075-T651) the wing metal and compare between numerical and experimental work, as well as to formulate an experimental mathematical model which may find safe estimate for metals and most common alloys that are used to build aircraft wing at certain conditions. In experimental work, a (34) specimen of (aluminum alloy 7075-T651) were tested using alternating bending fatigue machine rig. The t
... Show MoreCams are considered as one of the most important mechanical components that depends the contact action to do its job and suffer a lot of with drawbacks to be predicted and overcame in the design process. this work aims to investigate the induced cam contact and the maximum shear stress energy or (von misses) stresses during the course of action analytically using Hertz contact stress equation and the principal stress formulations to find the maximum stress value and its position beneath the contacting surfaces. The experimental investigation adopted two dimensions photoelastic technique to analyze cam stresses under a plane polarized light. The problem has been numerically simulated using Ansys software version 15 as FE
... Show More