The analysis of rigid pavements is a complex mission for many reasons. First, the loading conditions include the repetition of parts of the applied loads (cyclic loads), which produce fatigue in the pavement materials. Additionally, the climatic conditions reveal an important role in the performance of the pavement since the expansion or contraction induced by temperature differences may significantly change the supporting conditions of the pavement. There is an extra difficulty because the pavement structure is made of completely different materials, such as concrete, steel, and soil, with problems related to their interfaces like contact or friction. Because of the problem's difficulty, the finite element simulation is the best technique incorporated in the analysis of rigid pavements. The ABAQUS software was used to conduct the response of previously tested specimens under different loading conditions. Good agreement between the laboratory and finite element results was observed. The maximum differences between experimental and finite element outcomes in terms of ultimate loads and ultimate deflection for rigid pavements under monotonic loading are 6% and 8%, respectively, and 10% and 18% respectively for the repeated load.
In the present work experiments were conducted to study the effect of solid loading (1,5 and 9 vol.%) on the enhancement of carbon dioxide absorption in bubble column at various volumetric gas flow rate (0.75, 1 and 1.5 m3/h) and absorbent concentration (caustic soda)( 0.1,0.5 and 1 M ). Activated carbon and alumina oxide (Al2O3) are used as solid particles. The Danckwerts method was used to calculate interfacial area and individual mass transfer coefficients during absorption of carbon dioxide in a bubble column. The results show that the absorption rate was increased with increasing volumetric gas flow rate, caustic soda concentration and solid loading. Mass transfer coefficient and interfac
... Show MorePlane cubics curves may be classified up to isomorphism or projective equivalence. In this paper, the inequivalent elliptic cubic curves which are non-singular plane cubic curves have been classified projectively over the finite field of order nineteen, and determined if they are complete or incomplete as arcs of degree three. Also, the maximum size of a complete elliptic curve that can be constructed from each incomplete elliptic curve are given.
Over the last few years, the interior designer has been given the ability to access many innovative tools for new forms of unprecedented diversity and efficiency. Some design experts have described the new parametric procedures they are introducing to create new interior projects as a radical transformation that carries all the elements of a qualitative shift in interior design. The best of these parametric procedures is the technical capabilities offered by us to create new forms that are different from what has been discussed in everything that has been produced by designers and architects since modernity and even before it to the present time, which returns our design products through a series of computer programs that perform the pro
... Show MoreThe objectives of this research are to determine and find out the reality of crops structure of greenhouses in association of Al-Watan in order to stand on the optimal use of economic resources available for the purpose of reaching a crop structure optimization of the farm that achieves maximize profit and gross and net farm incomes , using the method of linear programming to choose the farm optimal plan with the highest net income , as well as identifying production plans farm efficient with (income - deviation) optimal (E-A) of the Association and derived, which takes into account the margin risk wich derived from each plan using the model( MOTAD), as a model of models of linear programming alternative programming m
... Show MoreMorphologies of ceramic hollow fiber membranes prepared by a combined phase-inversion and sintering method were studied. The organic binder spinning solution containing suspended Al₂O₃ powders was spun to a hollow fiber precursor, which was then sintered at elevated temperatures( 300 ˚C, 1400 ˚C, 25 ˚C) in order to obtain the Al₂O₃ hollow fiber membranes. The spinning solution consisted of polyether sulfone (PES), N-methyl-2-pyrrolidone (NMP), which were used as polymer binder, solvent, respectively. The prepared Al₂O₃ hollow fiber membranes were characterized by a scanning electron microscope (SEM). It is believed that finger-like void formation in asymmetric ceramic membranes is initiated by hydrodynamically unstable vis
... Show MoreIn this work, an analytical approximation solution is presented, as well as a comparison of the Variational Iteration Adomian Decomposition Method (VIADM) and the Modified Sumudu Transform Adomian Decomposition Method (M STADM), both of which are capable of solving nonlinear partial differential equations (NPDEs) such as nonhomogeneous Kertewege-de Vries (kdv) problems and the nonlinear Klein-Gordon. The results demonstrate the solution’s dependability and excellent accuracy.
Many numerical approaches have been suggested to solve nonlinear problems. In this paper, we suggest a new two-step iterative method for solving nonlinear equations. This iterative method has cubic convergence. Several numerical examples to illustrate the efficiency of this method by Comparison with other similar methods is given.
The main object of this study is to solve a system of nonlinear ordinary differential equations (ODE) of the first order governing the epidemic model using numerical methods. The application under study is a mathematical epidemic model which is the influenza model at Australia in 1919. Runge-kutta methods of order 4 and of order 45 for solving this initial value problem(IVP) problem have been used. Finally, the results obtained have been discussed tabularly and graphically.
Abstract
This paper represents a study of the effect of the soil type, the drilling parameters and the drilling tool properties on the dynamic vibrational behavior of the drilling rig and its assessment in the drilling system. So first, an experimental drilling rig was designed and constructed to embrace the numerical work.
The experimental work included implementation of the drill-string in different types of soil with different properties according to the difference in the grains size, at different rotational speeds (RPM), and different weights on bit (WOB) (Thrust force), in a way that allows establishing the charts that correlate the vibration acceleration, the rate of penetration (ROP), and the power
... Show More