In order to implement the concept of sustainability in the field of construction, it is necessary to find an alternative to the materials that cause pollution by manufacturing, the most important of which is cement. Because factory wastes provide siliceous and aluminous materials and contain calcium such as fly ash and slag that are used in the production of high-strength geopolymer concrete with specifications similar to ordinary concrete, it was necessary for developing this type of concrete that is helping to reduce CO2 (dioxide carbon) in the atmosphere. Therefore, the aim of this study was to study the influence of incorporating various percentages of slag as a replacement for fly ash and the effect of slag on mechanical properties. This paper showed the details of the experimental work that has been undertaken to search and make tests the strength of geopolymer mixtures made of fly ash and then replaced fly ash with slag in different percentages. The geopolymer mixes were prepared using a ground granulated blast-furnace slag (GGBFS) blend and low calcium fly ash class F activated by an alkaline solution. The mixture compositions of fly ash to slag were (0.75:0.25, 0.65:0.35, 0.55:0.45) by weight of cementitious materials respectively and compared with reference mix of conventional concrete with mix proportion 1:1.5:3 (cement: sand: coarse agg.), respectively. The copper fiber was used as recycled material from electricity devices wastes such as (machines, motors, wires, and electronic devices) to enhance the mechanical properties of geopolymer concrete. The heat curing system at 40 oC temperature was used. The results revealed that the mix proportion of 0.45 blast furnace slag and 0.55 fly ash produced the best strength results. It also showed that this mix ratio could provide a solution for the need for heat curing for fly ash-based geopolymer.
Objectives: Successful endodontic treatment outcome requires effective shaping and cleaning of root canals. This study aims to evaluate the smear layer removal after continuous chelation (CC) ) NaOCL\HEDP( and sequential chelation (SC) )NaOCL\EDTA( and their influence on the push-out bond strength (POBS) of Bio-C sealer. Materials and Methods: Palatal roots of the maxillary first molar (n=72) were divided into four groups (n=18) as follows: 3% NaOCL, SC: 3% NaOCL followed by 17% EDTA, CC: 3% NaOCL \9% HEDP and Distilled water. Thirty-two roots (n=8/group) were split longitudinally for smear layer evaluation using SEM. Forty roots were obturated with Guttapercha and Bio-C sealer using a single cone technique. Thre
... Show MoreAttempts were made to improve solubility and the liquisolid technology dissolving of medication flurbiprofen. Liquisolid pill was developed utilizing transcutol-HP, polyethylene glycol 400, Avecil PH 102 carrier material and Aerosil 200 layer coating material. Suitable excipient amounts were determined to produce liquisolid powder using a mathematical model. On the other hand, flurbiprofen tablet with the identical composition, directly compressed, was manufactured for comparison without the addition of any unvolatile solvent. Both powder combination characterizations and after-compression tablets were evaluated. The pure drug and physical combination, and chosen liquisolid tablets were studied in order to exclude interacting with t
... Show MoreIn this research, (MOORA) approach based– Taguchi design was used to convert the multi-performance problem into a single-performance problem for nine experiments which built (Taguchi (L9) orthogonal array) for carburization operation. The main variables that had a great effect on carburizing operation are carburization temperature (oC), carburization time (hrs.) and tempering temperature (oC). This study was also focused on calculating the amount of carbon penetration, the value of hardness and optimal values obtained during the optimization by Taguchi approach and MOORA method for multiple parameters. In this study, the carburization process was done in temperature between (850 to 950 ᵒC) for 2 to 6
... Show MoreRA Ali, LK Abood, Int J Sci Res, 2017 - Cited by 2
Natural gas and oil are one of the mainstays of the global economy. However, many issues surround the pipelines that transport these resources, including aging infrastructure, environmental impacts, and vulnerability to sabotage operations. Such issues can result in leakages in these pipelines, requiring significant effort to detect and pinpoint their locations. The objective of this project is to develop and implement a method for detecting oil spills caused by leaking oil pipelines using aerial images captured by a drone equipped with a Raspberry Pi 4. Using the message queuing telemetry transport Internet of Things (MQTT IoT) protocol, the acquired images and the global positioning system (GPS) coordinates of the images' acquisition are
... Show MoreThe study was carried out in plant tissue culture laboratory, University of Baghdad during the period 2017-2019, as factorial experiment in complete randomized design, to study the effect of PEG at (0, 2, 4, 6 and 8%) on physiological and chemical changes in callus of three sunflower (Ishaqi 1, Aqmar and Al-haga) induced by the cultivation of the young stem in vitro under water stress. The content of callus cells of SOD, POD, CAT and APX enzymes as well as total dissolved carbohydrate were determined as indicators to determine the effect of PEG in callus tissue cells cultivated on medium equipped with the PEG concentrations. The results showed that cultivars were differs significantly, and A-haja variety was superior in increasing SOD to 12
... Show MoreThe Cu2SiO3 composite has been prepared from the binary compounds (Cu2O, and SiO2) with high purity by solid state reaction. The Cu2SiO3 thin films were deposited at room temperature on glass and Si substrates with thickness 400 nm by pulsed laser deposition method. X-ray analysis showed that the powder of Cu2SiO3 has a polycrystalline structure with monoclinic phase and preferred orientation along (111) direction at 2θ around 38.670o which related to CuO phase. While as deposited and annealed Cu2SiO3 films have amorphous structure. The morphological study revealed that the grains have granular and elliptical shape, with average diameter of 163.63 nm. The electrical properties which represent Hall effect were investigated. Hall coeffici
... Show MoreIn this research, the study effect of irradiation on structural and optical properties of thin film (CdO) by spray pyrolysis method, which deposited on glasses substrates at a thickness of (350±20)nm , The flow rate of solution was 5 ml/min and the substrate temperature was held constant at 400˚C.The investigation of (XRD) indicates that the (CdO) films are polycrystalline and type of cubic. The results of the measuring of each sample from grain size, micro strain, dislocation density and number of crystals the grain size decreasing after irradiation with gamma ray from(27.41, 26.29 ,23.63)nm . The absorbance and transmittance spectra have been recorded in the wavelength range (300-1100) nm in order to study the optical properties. the op
... Show More