Experimental measurements were done for characterizing current-voltage and power-voltage of two types of photovoltaic (PV) solar modules; monocrystalline silicon (mc-Si) and copper indium gallium di-selenide (CIGS). The conversion efficiency depends on many factors, such as irradiation and temperature. The assembling measures as a rule cause contrast in electrical boundaries, even in cells of a similar kind. Additionally, if the misfortunes because of cell associations in a module are considered, it is hard to track down two indistinguishable photovoltaic modules. This way, just the I-V, and P-V bends' trial estimation permit knowing the electrical boundaries of a photovoltaic gadget with accuracy. This measure gives extremely significant data to the plan, establishment, and upkeep of PV frameworks. Three methods, simplified explicit, slope, and iterative, are used to compute two solar models' parameters using MATLAB code. The percentage maximum power errors at (600 and 1000) W/m2 for both current-voltage and power-voltage values with the corresponding measured ones using the slope method are 0.5% and 3% for monocrystalline silicon copper indium gallium di-selenide, respectively. The iterative method is 5 % and 10% for monocrystalline silicon and copper indium gallium di-selenide. Finally, for the simplified explicit 8% and 9%, for monocrystalline silicon and copper indium gallium di-selenide, respectively. The slope method gives more close results with the corresponding measured values than the other two methods for the two PV solar modules used. Consequently, the slope method is less influenced by the meteorological condition.
Biologically active natural compounds are molecules produced by plants or plant-related microbes, such as endophytes. Many of these metabolites have a wide range of antimicrobial activities and other pharmaceutical properties. This study aimed to evaluate (in vitro) the antifungal activities of the secondary metabolites obtained from Paecilomyces sp. against the pathogenic fungus Rhizoctonia solani. The endophytic fungus Paecilomyces was isolated from Moringa oleifera leaves and cultured on potato dextrose broth for the production of the fungal metabolites. The activity of Paecilomyces filtrate against the radial growth of Rhizoctonia solani was tested by mixing the filtrate with potato dextrose agar medium at concentrations of 15%,
... Show Moreسرطان البنكرياس هو مرض ذو معدل وفيات مرتفع، ولا يزال التشخيص المبكر لسرطان البنكرياس يمثل تحديًا. يظل معدل البقاء النسبي لمدة 5 سنوات أقل من 8%، والاستراتيجيات العلاجية غير فعالة في زيادة معدلات بقاء المريض على قيد الحياة. في خلايا سرطان البنكرياس، ارتبطت مقاومة العلاج بالتغيرات الجينية التي تؤدي إلى ظهور مسارات خلوية شاذة؛ ولذلك، هناك ما يبرر ايجاد استراتيجيات جديدة لعلاج هذا المرض. هنا، سعينا لاستكشاف
... Show MoreDuodenal and gastric ulcers remain the two most common perforations of the gastrointestinal tract and might be reduced by the early detection of predictive factors, which has limitedly researched. This study conducted to examine the predictive factors for developing of gastroduodenal ulcer among patients attending Gastrointestinal Teaching Hospitals in Baghdad, Iraq.
A cross-sectional survey with a total of 100 patients with gastric and duodenal ulcers was recruited using a nonprobability (purposive) sampling techniqu
This study used deep eutectic solvent (DES) as the liquid membrane in a bulk liquid membrane system (BLM) to remove glycerol from waste cooking oil‐based biodiesel. The DES was prepared from choline chloride and tetraethylene glycol at a molar ratio of 1:5. Diethyl ether was employed as a novel strip phase for the glycerol in BLM. The effects of the DES: biodiesel ratio, stirring speed, and extraction time on the extraction and stripping efficiencies were investigated. The results showed that BLM could give better glycerol removal from biodiesel than mechanical shaking. Increasing the DES: biodiesel ratio, stirring speed, and extraction time can enhance glycerol removal from the feed phase, achievi