Convolutional Neural Networks (CNN) have high performance in the fields of object recognition and classification. The strength of CNNs comes from the fact that they are able to extract information from raw-pixel content and learn features automatically. Feature extraction and classification algorithms can be either hand-crafted or Deep Learning (DL) based. DL detection approaches can be either two stages (region proposal approaches) detector or a single stage (non-region proposal approach) detector. Region proposal-based techniques include R-CNN, Fast RCNN, and Faster RCNN. Non-region proposal-based techniques include Single Shot Detector (SSD) and You Only Look Once (YOLO). We are going to compare the speed and accuracy of Faster RCNN, YOLO, and SSD for effective drone detection in various environments. We have found that both Faster RCNN and YOLO have high recognition ability compared to SSD; on the other hand, SSD has good detection ability.
Iraq suffers from serious pollution with harmful particles that have important direct and indirect effects on human activities and human health. In this research, a system for detecting pollutants in the air was designed and manufactured using infrared laser technology. This system was used to detect the presence of pollutants in the dust storms that swept the city of Baghdad which could have a negative impact on human health and living organisms.
The designed detection system based on the use of infrared laser (IR) with a wavelength of 1064 nm was used for the purposes of detecting pollutants based on the scattering of the laser beam from these pollutants. The system was aligned to obtain the best signal for the scattered rays, w
... Show MoreBeyond the immediate content of speech, the voice can provide rich information about a speaker's demographics, including age and gender. Estimating a speaker's age and gender offers a wide range of applications, spanning from voice forensic analysis to personalized advertising, healthcare monitoring, and human-computer interaction. However, pinpointing precise age remains intricate due to age ambiguity. Specifically, utterances from individuals at adjacent ages are frequently indistinguishable. Addressing this, we propose a novel, end-to-end approach that deploys Mozilla's Common Voice dataset to transform raw audio into high-quality feature representations using Wav2Vec2.0 embeddings. These are then channeled into our self-attentio
... Show MoreTo determine the relationship between Helicobacter pylori infection and skin disorders, sixty six patients who suffering from skin diseases include chronic urticarial (CU) and atopic dermatitis (AD) who attended at Dermatological Clinic/ Al-Numan Teaching Hospital from the beginning of October 2015 to the end of January 2016 with age (6-62) have been investigated and compared to twenty two samples of apparently healthy individuals were studied as control group. All the studied groups were subjected to measurement of antiHelicobacter pylori IgG antibodies by enzyme linked immuno sorbent assay (ELISA) and detection of 16S rRNA and CagA genes by using singleplex and multiplex PCR methods. The results of current study revealed that there was a
... Show MoreIn this study, a genetic algorithm (GA) is used to detect damage in curved beam model, stiffness as well as mass matrices of the curved beam elements is formulated using Hamilton's principle. Each node of the curved beam element possesses seven degrees of freedom including the warping degree of freedom. The curved beam element had been derived based on the Kang and Yoo’s thin-walled curved beam theory. The identification of damage is formulated as an optimization problem, binary and continuous genetic algorithms
(BGA, CGA) are used to detect and locate the damage using two objective functions (change in natural frequencies, Modal Assurance Criterion MAC). The results show the objective function based on change in natural frequency i
The goal of the study is to discover the best model for forecasting the exchange rate of the US dollar against the Iraqi dinar by analyzing time series using the Box Jenkis approach, which is one of the most significant subjects in the statistical sciences employed in the analysis. The exchange rate of the dollar is considered one of the most important determinants of the relative level of the health of the country's economy. It is considered the most watched, analyzed and manipulated measure by the government. There are factors affecting in determining the exchange rate, the most important of which are the amount of money, interest rate and local inflation global balance of payments. The data for the research that represents the exchange r
... Show MoreAbstract
The grey system model GM(1,1) is the model of the prediction of the time series and the basis of the grey theory. This research presents the methods for estimating parameters of the grey model GM(1,1) is the accumulative method (ACC), the exponential method (EXP), modified exponential method (Mod EXP) and the Particle Swarm Optimization method (PSO). These methods were compared based on the Mean square error (MSE) and the Mean Absolute percentage error (MAPE) as a basis comparator and the simulation method was adopted for the best of the four methods, The best method was obtained and then applied to real data. This data represents the consumption rate of two types of oils a he
... Show MoreThis study aims to assess the accuracy of digital elevation model (DEM) created with utilization of handheld Global Positioning System (GPS) and comparing with Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM), version 2. It is known that the quality of the DEM is affected by both of accuracy of elevation at each pixel (absolute accuracy) and accuracy of presented morphology (relative accuracy). The University of Baghdad, Al Jadriya campus was selected as a study area to create and analysis the resulting DEM. Additionally, Geographic Information System (GIS) was used to visualize, analyses and interpolate GPS track points (elevation data) of the study area. In this
... Show MoreRegarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct
... Show More