Portable devices such as smartphones, tablet PCs, and PDAs are a useful combination of hardware and software turned toward the mobile workers. While they present the ability to review documents, communicate via electronic mail, appointments management, meetings, etc. They usually lack a variety of essential security features. To address the security concerns of sensitive data, many individuals and organizations, knowing the associated threats mitigate them through improving authentication of users, encryption of content, protection from malware, firewalls, intrusion prevention, etc. However, no standards have been developed yet to determine whether such mobile data management systems adequately provide the fundamental security functions demanded by organizations and whether these functions have been securely developed. Therefore, this paper proposes a security framework for mobile data that combines core security mechanisms to avoid these problems and protects sensitive information without spending time and money deploying several new applications.
A new distribution, the Epsilon Skew Gamma (ESΓ ) distribution, which was first introduced by Abdulah [1], is used on a near Gamma data. We first redefine the ESΓ distribution, its properties, and characteristics, and then we estimate its parameters using the maximum likelihood and moment estimators. We finally use these estimators to fit the data with the ESΓ distribution
The search aims to clarify pollution to negative effects on environment and to an increasing in the dangerous polluted materials that discharged out these factories. To make active procedures in order to limit the environmental pollution.
The search problem came from an assumption which has the researched factory is suffering from the lack of applying the international specification ( ISO 14004 ). The research problem assimilated by these questions:
- What is the level or organization in thinking of environmental system according to ISO 14004 .
- What are the requirements used in researched factor
This paper presents a brief study undertaken for improving the performance of information and communication management of construction projects through investing in information and communication technologies (ICT). The work aims at first to investigate and diagnose the problems, challenges, weaknesses, and inefficiencies related to information and communication management in projects in the construction industry of Iraq. Studying the diagnosed matters and the different solutions of ICT to improve project management performance is following the investigation process. The research presents a technological system suggested to process a lot of the diagnosed problems, challenges, weakness, and inefficiencies of the construction projects and t
... Show MoreIn this paper, the homotopy perturbation method (HPM) is presented for treating a linear system of second-kind mixed Volterra-Fredholm integral equations. The method is based on constructing the series whose summation is the solution of the considered system. Convergence of constructed series is discussed and its proof is given; also, the error estimation is obtained. Algorithm is suggested and applied on several examples and the results are computed by using MATLAB (R2015a). To show the accuracy of the results and the effectiveness of the method, the approximate solutions of some examples are compared with the exact solution by computing the absolute errors.
The performance of a solar assisted desiccant cooling system for a meeting-hall located in the College of Engineering/University of Baghdad was evaluated theoretically. The system was composed of four components; a solar air heater, a desiccant dehumidifier, a heat exchanger and an evaporative cooler. A computer simulation was developed by using MATLAB to assess the effect of various design and operating conditions on the performance of the system and its components. The actual weather data on recommended days were used to assess the load variation and the system performance during those days. The radiant time series method (RTS) was used to evaluate the hourly variation of the cooling load. Four operation modes were employed for perform
... Show MoreTo damp the low-frequency oscillations which occurred due to the disturbances in the electrical power system, the generators are equipped with Power System Stabilizer (PSS) that provide supplementary feedback stabilizing signals. The low-frequency oscillations in power system are classified as local mode oscillations, intra-area mode oscillation, and interarea mode oscillations. Double input multiband Power system stabilizers (PSSs) were used to damp out low-frequency oscillations in power system. Among dual-input PSSs, PSS4B offers superior transient performance. Power system simulator for engineering (PSS/E) software was adopted to test and evaluate the dynamic performance of PSS4B model on Iraqi national grid. The res
... Show MoreThe stress(Y) – strength(X) model reliability Bayesian estimation which defines life of a component with strength X and stress Y (the component fails if and only if at any time the applied stress is greater than its strength) has been studied, then the reliability; R=P(Y<X), can be considered as a measure of the component performance. In this paper, a Bayesian analysis has been considered for R when the two variables X and Y are independent Weibull random variables with common parameter α in order to study the effect of each of the two different scale parameters β and λ; respectively, using three different [weighted, quadratic and entropy] loss functions under two different prior functions [Gamma and extension of Jeffery
... Show MoreIn order to obtain a mixed model with high significance and accurate alertness, it is necessary to search for the method that performs the task of selecting the most important variables to be included in the model, especially when the data under study suffers from the problem of multicollinearity as well as the problem of high dimensions. The research aims to compare some methods of choosing the explanatory variables and the estimation of the parameters of the regression model, which are Bayesian Ridge Regression (unbiased) and the adaptive Lasso regression model, using simulation. MSE was used to compare the methods.
The investigation of machine learning techniques for addressing missing well-log data has garnered considerable interest recently, especially as the oil and gas sector pursues novel approaches to improve data interpretation and reservoir characterization. Conversely, for wells that have been in operation for several years, conventional measurement techniques frequently encounter challenges related to availability, including the lack of well-log data, cost considerations, and precision issues. This study's objective is to enhance reservoir characterization by automating well-log creation using machine-learning techniques. Among the methods are multi-resolution graph-based clustering and the similarity threshold method. By using cutti
... Show More