The hydraulic behavior of the flow can be changed by using large-scale geometric roughness elements in open channels. This change can help in controlling erosions and sedimentations along the mainstream of the channel. Roughness elements can be large stone or concrete blocks placed at the channel's bed to impose more resistance in the bed. The geometry of the roughness elements, numbers used, and configuration are parameters that can affect the flow's hydraulic characteristics. In this paper, velocity distribution along the flume was theoretically investigated using a series of tests of T-shape roughness elements, fixed height, arranged in three different configurations, differ in the number of lines of roughness element. These elements were used to find the best configuration of roughness elements that can be applied to change the flow's hydraulic characteristics. ANSYS Parametric Design Language, APDL, and Computational Fluid Dynamics, CFD, was used to simulate the flow in an open channel with roughness elements. CFD can be used to study the hydrodynamics of open channels under different conditions with inclusive details rather than relying on the costly field and time-consuming. Runs were implemented with different conditions, the discharge, and water depth in upstream and downstream of the flume. T-shape roughness elements with height equal to 3cm placed in three different configurations, two lines, four lines, and fully rough configurations were tested. The results show that the effect of roughness elements increasing with increasing the number of lines of roughness elements. Cases of four lines and fully rough configurations have almost the same hydraulic performance by having the same results of the velocity decrease percentage, which is decreased by approximately about 66% and 61% of the control case's velocity in the zone near the roughness elements consequently. But the difference is that four lines configuration is affected in a part of the test section. This behavior increases the velocity values by about 11% in the other side and by about 10% near the free surface in the case of four lines configuration and increased by about 32% above the roughness elements in a fully rough configuration.
This research aims to improve the radiation shielding properties of polymer-based materials by mixing PVC with locally available building materials. Specifically, two key parameters of fast neutron attenuation (removal cross-section and half-value layer) were studied for composite materials comprising PVC reinforced with common building materials (cement, sand, gypsum and marble) in different proportions (10%, 30% and 50% by weight). To assess their effectiveness as protection against fast neutrons, the macroscopic neutron cross-section was calculated for each composite. Results show that neutron cross-section values are significantly affected by the reinforcement ratios, and that the composite material PVC + 50% gypsum is an effect
... Show MoreAbstract
Characterized by the Ordinary Least Squares (OLS) on Maximum Likelihood for the greatest possible way that the exact moments are known , which means that it can be found, while the other method they are unknown, but approximations to their biases correct to 0(n-1) can be obtained by standard methods. In our research expressions for approximations to the biases of the ML estimators (the regression coefficients and scale parameter) for linear (type 1) Extreme Value Regression Model for Largest Values are presented by using the advanced approach depends on finding the first derivative, second and third.
In this study, ultraviolet (UV), ozone techniques with hydrogen peroxide oxidant were used to treat the wastewater which is produced from South Baghdad Power Station using lab-scale system. From UV-H2O2 experiments, it was shown that the optimum exposure time was 80 min. At this time, the highest removal percentages of oil, COD, and TOC were 84.69 %, 56.33 % and 50 % respectively. Effect of pH on the contaminants removing was studied in the range of (2-12). The best oil, COD, and TOC removal percentages (69.38 %, 70 % and 52 %) using H2O2/UV were at pH=12. H2O2/ozone experiments exhibited better performance compared to
... Show MoreIn recent years, the field of research around the congestion problem of 4G and 5G networks has grown, especially those based on artificial intelligence (AI). Although 4G with LTE is seen as a mature technology, there is a continuous improvement in the infrastructure that led to the emergence of 5G networks. As a result of the large services provided in industries, Internet of Things (IoT) applications and smart cities, which have a large amount of exchanged data, a large number of connected devices per area, and high data rates, have brought their own problems and challenges, especially the problem of congestion. In this context, artificial intelligence (AI) models can be considered as one of the main techniques that can be used to solve ne
... Show MoreA localized stenosis or aneurysm is a discontinuity that presents the pulse wave produced by the contracting heart with a reflection site. However, neither wave speed ( c) in these discontinuities nor the size of reflection in relation to the size of the discontinuity has been adequately studied before. Therefore, the aim of this work is to study the propagation of waves traversing flexible tubes in the presence of aneurysm and stenosis in vitro. We manufactured different sized four stenosis and four aneurysm silicone sections, connected one at a time to a flexible ‘mother’ tube, at the inlet of which a single semi-sinusoidal wave was generated. Pressure and velocity were measured simultaneously 25 cm downstream the inlet of th
... Show MoreChilled ceilings systems offer potential for overall capital savings. The main aim of the present research is to investigate the thermal performance of the indirect contact closed circuit cooling tower, ICCCCT used with chilled ceiling, to gain a deeper knowledge in this important field of engineering which has been traditionally used in various industrial & HVAC systems. To achieve this study, experimental work were implemented for the ICCCCT use with chilled ceiling. In this study the thermal performances of closed wet cooling tower use with chilled ceiling is experimentally and theoretically investigated. Different experimental tests were conducted by varying the controlling parameters to investigate their effects
... Show MoreThis paper presents an experimental and theoretical analysis to investigate the two-phase flow boiling heat transfer coefficient and pressure drop of the refrigerant R-134a in the evaporator test section of the refrigeration system under different operating conditions. The test conditions considered are, for heat flux (13.7-36.6) kW/m2, mass flux (52-105) kg/m2.s, vapor quality (0.2-1) and saturation temperature (-15 to -3.7) ˚C. Experiments were carried out using a test rig for a 310W capacity refrigeration system, which is designed and constructed in the current work. Investigating of the experimental results has revealed that, the enhancement in local heat trans
... Show MoreThe opportunistic multidrug resistance pathogen Pseudomonas aeruginosa has one or several flagella, and the numbers of these sophisticated machines are regulated by the flagellar regulator gene FleN. The flagellar hook gene FlgE is important for its synthesis, motility and tolerance to antibiotics. Bacteriahave resistance to antibiotics, especially to cephalosporin beta-lactam antibiotics. For the current study, 102 clinical specimens were collected and identified using routine laboratory tests and confirmed by Vitek-2 compact system. A total of 33 isolates of P. aeruginosa were identified. The antibiotic susceptibility test was done by the Vitek 2 Compact system. Flagellar gene detected by conventional PCR revealed that the FleN
... Show More