The performance and durability of the asphalt pavement structure mainly depend on the strength of the bonding between the layers. Such a bond is achieved through the use of an adhesive material (tack coat) to bond the asphalt layers. The main objective of this study is to evaluate the effect of moisture in conjunction with repeated traffic loads on the strength of the bonding between asphalt layers using two types of tack coats with different application rates. Using the nominal maximum size of aggregate (NMAS), the layers were graded (25/19) and (19/9.5) mm. The slabs of multilayer asphalt concrete were prepared using a roller compactor using two types of tack coats to bond between layers, namely rapid curing cut back asphalt (RC-70) and cationic medium setting emulsion (CMS), with different application rates. Six extruded cores with a diameter of 116 mm each form the prepared slab has been obtained. Core specimens were subjected to moisture damage according to the American Association of State Highway and Transportation Officials (AASHTO), after which repeated bond shear stresses and monotonic tests are practiced. It is concluded that permanent deformation increased with moisture-induction under repeated load for both interfaces and tack coat types. The (CMS) as a tack coat had less permanent deformation values than RC-70 for both interface types and all application rates. In contrast, the interface bond strength (IBS) value was higher than that for (RC-70) in both interface types after moisture conditions. The trend of the results illustrates that (IBS) decreased with moisture conditions under repeated load, as compared to samples under repeated load only.
One of the most important parameters determining structural members' durability and strength is the fire flame's influence and hazard. Some engineers have advocated using advanced analytical models to predict fire spread impact within a compartment and considering finite element models of structural components to estimate the temperatures within a component using heat transfer analysis. This paper presented a numerical simulation for a reinforced concrete beam’s structural response in a case containing Water Absorbing Polymer Spheres (WAPS) subjected to fire flame effect. The commercial finite element package ABAQUS was considered. The relevant geometrical and material parameters of the reinforced concrete beam model a
... Show MoreOne of the most important parameters determining structural members' durability and strength is the fire flame's influence and hazard. Some engineers have advocated using advanced analytical models to predict fire spread impact within a compartment and considering finite element models of structural components to estimate the temperatures within a component using heat transfer analysis. This paper presented a numerical simulation for a reinforced concrete beam’s structural response in a case containing Water Absorbing Polymer Spheres (WAPS) subjected to fire flame effect. The commercial finite element package ABAQUS was considered. The relevant geometrical and material parameters of the reinforced concrete beam model at elevated t
... Show MoreBackground: The goal of a root canal treatment is three dimensional obturation with a complete seal of the root canal system. The aim of this study was to evaluate and compare the effect of two warm obturation techniques, warm vertical compaction (WVC) and, carrier based obturation technique Gutta Core (GC), versus two cold obturation techniques, cold lateral compaction (CLC) and, single cone (SC) on push-out bond strength of bioceramic sealer (Total Fill) at three different root levels. Materials and Methods: Forty extracted maxillary first molars teeth with a straight round palatal root canal and mature apices were selected for this study. After sectioning the palatal roots to 11 mm from the root apex, the canals were
... Show MoreBackground: The goal of a root canal treatment is three dimensional obturation with a complete seal of the root canal system. The aim of this study was to evaluate and compare the effect of two warm obturation techniques, warm vertical compaction (WVC) and, carrier based obturation technique Gutta Core (GC), versus two cold obturation techniques, cold lateral compaction (CLC) and, single cone (SC) on push-out bond strength of bioceramic sealer (Total Fill) at three different root levels. Materials and Methods: Forty extracted maxillary first molars teeth with a straight round palatal root canal and mature apices were selected for this study. After sectioning the palatal roots to 11 mm from the root apex, the canals were prepared wit
... Show MoreCuring of concrete is the maintenance of a satisfactory moisture content and temperature for a
period of time immediately following placing so the desired properties are developed. Accelerated
curing is advantages where early strength gain in concrete is important. The expose of concrete
specimens to the accelerated curing conditions which permit the specimens to develop a significant
portion of their ultimate strength within a period of time (1-2 days), depends on the method of the
curing cycle.Three accelerated curing test methods are adopted in this study. These are warm water,
autogenous and proposed test methods. The results of this study has shown good correlation
between the accelerated strength especially for
Free vibration behavior was developed under the ratio of critical buckling temperature of laminated composite thin plates with the general elastic boundary condition. The equations of motion were found based on classical laminated plate theory (CLPT) while the solution functions consists of trigonometric function and a continuous function that is added to guarantee the sufficient smoother of the so-named remaining displacement function at the boundaries, in this research, a modified Fourier series were used, a generalized procedure solution was developed using Ritz method combined with the imaginary spring technique. The influences of many design parameters such as angles of layers, aspect ratio, thickness ratio, and ratio of initial in-
... Show MoreThe advancement of cement alternatives in the construction materials industry is fundamental to sustainable development. Geopolymer is the optimal substitute for ordinary Portland cement, which produces 80% less CO2 emissions than ordinary Portland cement. Metakaolin was used as one of the raw materials in the geopolymerization process. This research examines the influence of three different percentages of sulfate (0.00038, 1.532, and 16.24) % in sand per molarity of NaOH on the compressive strength of metakaolin-based geopolymer mortar (MK-GPM). Samples were prepared with two different molarities (8M and 12M) and cured at room temperature. The best compressive strength value (56.98MPa) was recorded with 12M w
... Show MoreThis paper introduces experimental results of eighteen simply supported reinforced concrete beams of cross sections ( ) and length 3000 mm to study the effect of lacing reinforcement on the performance of such beams under static and fatigue loads. Twelve reinforced concrete beams (two of them are casted with vertical shear reinforcement used as control beams) are tested under four points bending loading with displacement control technique and six laced reinforced concrete beams were exposed to high frequency (10 Hz) by fixing the fatigue load in each cycle. Three parameters are used in the designed beams, which are: lacing bar diameter (4mm, 6mm, and 8mm), lacing bar inclination angle to horizontal , and lacing steel rat
... Show MoreThe main aim of this paper is studied the punching shear and behavior of reinforced concrete slabs exposed to fires, the possibility of punching shear failure occurred as a result of the fires and their inability to withstand the loads. Simulation by finite element analysis is made to predict the type of failure, distribution temperature through the thickness of the slabs, deformation and punching strength. Nonlinear finite element transient thermal-structural analysis at fire conditions are analyzed by ANSYS package. The validity of the modeling is performed for the mechanical and thermal properties of materials from earlier works from literature to decrea
... Show More