Thin-walled members are increasingly used in structural applications, especially in light structures like in constructions and aircraft structures because of their high strength-to-weight ratio. Perforations are often made on these structures for reducing weight and to facilitate the services and maintenance works like in aircraft wing ribs. This type of structures suffers from buckling phenomena due to its dimensions, and this suffering increases with the presence of holes in it. This study investigated experimentally and numerically the buckling behavior of aluminum alloy 6061-O thin-walled lipped channel beam with specific holes subjected to compression load. A nonlinear finite elements analysis was used to obtain the buckling loads of the beams. Experimental tests were done to validate the finite element results. Three factors namely; shape of holes, opening ratio D/Do and the spacing ratio S/Do were chosen to study their effects on the buckling strength of the channel beams. Finite elements results were obtained by using Taguchi method to identify the best combination of the three parameters for optimum critical buckling load, whereas determining the contribution of each parameter on buckling strength was implemented by using the analysis of variance technique (ANOVA) method. Results showed that the combination of parameters that gives the best buckling strength is the hexagonal hole shape, D/Do=1.7 and S/Do= 1.3 and the opening ratio (or size of holes) is the most effective on buckling behavior.
TiO2 thin films were deposited by reactive d.c magnetron sputtering method on a glass substrate with various ratio of gas flow (Oxygen /Argon) (50/50, 100/50 and 150/50) at substrate temperature 573K. It can be observe that the optical energy gap of TiO2 thin films dependent on the ratio of gas flow (oxygen/argon), it varies between (3.45eV-3.57eV) also it is seen that the optical constants (α, n, K, εr and εi ) has been varied with the change of the ratio of gas flow (Oxygen /Argon).
Transparent thin films of CdO:Ce has been deposited on to glass and silicon substrates by spray pyrolysis technique for various concentrations of cerium (2, 4, and 6 Vol.%). CdO:Ce films were characterized using different techniques such as X-ray diffraction (XRD), atomic force microscopy(AFM) and optical properties. XRD analysis show that CdO films exhibit cubic crystal structure with (1 1 1) preferred orientation and the intensity of the peak increases with increasing's of Ce contain when deposited films on glass substrate, while for silicon substrate, the intensity of peaks decreases, the results reveal that the grain size of the prepared thin film is approximately (73.75-109.88) nm various with increased of cerium content. With a sur
... Show MoreAluminum doped zinc selenide ZnSe/n-Si thin films of (250∓20 nm) thickness with (0.01, 0.02 and 0.03), are depositing on the two type of substrate (glass and n-Si) to manufacture (ZnSe/n-Si) solar cell through using thermal vacuum evaporation procedure. physical and optoelectronic properties were examined for the samples. X-Ray and AFM techniques are using to study the structure properties. The energy band gap of as-deposited ZnSe thin films for changed dopant ratio were ranging from (2.6-2.68 eV). The results of Hall effect show that pure and doping films were (p-type), and the concentration carriers and the carriers mobility increases with increase Al-dopant ratio. The (C-V) have shown that the heterojunction were of abrupt type. In add
... Show MoreThe research involved attempt to inhibit the corrosion of Al-Si-Cu alloy in 2.5x10-3 mol.dm-3 NaOH solution (pH=11.4) by addition of six different inhibitors with three concentrations (1x10-3, 1x10-2, and 0.1 mol.dm-3). These inhibitors include three organic materials (sodium acetate, sodium benzoate, and sodium oxalate) and three inorganic materials (sodium chromate, disodium phosphate, and sodium sulphate). The data that concerning polarization behaviour are calculates which include the corrosion potential (Ecorr) and current density (icorr), cathodic and anodic Tafel slopes (bc & ba), and polarization resistance (Rp). Protection efficiency (P%) and activation energy (Ea) values were calculated for inhibition by the six inhibitors. The
... Show MoreFormation of Au–Ag–Cu ternary alloy nanoparticles (NPs) is of particular interest because this trimetallic system have miscible (Au–Ag and Au–Cu) and immiscible (Ag– Cu) system. So there is a possibility of phase segregation in this ternary system. At this challenge it was present attempts synthetic technique to generate such trimetallic alloy nanoparticles by exploding wire technique. The importance of preparing nanoparticles alloys in distilled water and in this technique makes the possibility of obtaining nanoparticles free of any additional chemical substance and makes it possible to be used in the treatment of cancer or diseases resulting from bacterial or virus with least toxic. In this work, three metals alloys Au-Ag-Cu
... Show MoreStandards of audit have been defined issued them by professional organizations the audit risk is: Failure of the auditor inadvertently to amend his opinion on the financial statements in suitable method, although these statements are Interpolated Essentially. As result the deep impacts caused by electronic operating systems in the accounting data in the audit process which audit risk has gained attention of many professional sides, especially the audit process and quality is relating with level of discovery the auditor for the mistakes of origin (misrepresentations) all their types and give the necessary confidence for the auditor to express his technical opinion in fidelity and certified financial statements which prepared electronicall
... Show MoreThe smart city concept has attracted high research attention in recent years within diverse application domains, such as crime suspect identification, border security, transportation, aerospace, and so on. Specific focus has been on increased automation using data driven approaches, while leveraging remote sensing and real-time streaming of heterogenous data from various resources, including unmanned aerial vehicles, surveillance cameras, and low-earth-orbit satellites. One of the core challenges in exploitation of such high temporal data streams, specifically videos, is the trade-off between the quality of video streaming and limited transmission bandwidth. An optimal compromise is needed between video quality and subsequently, rec
... Show MoreIn engineering, the ground in seismically active places may be subjected to static and seismic stresses. To avoid bearing capacity collapse, increasing the system's dynamic rigidity, and/or reducing dynamic fluctuations, it may be required to employ deep foundations instead of shallow ones. The axial aptitude and pipe pile distribution of load under static conditions have been well reported, but more study is needed to understand the dynamic axial response. Therefore, this research discusses the outputs of the 3D finite element models on the soil-pile behavior under different acceleration intensities and soil states by using MIDAS GTS NX. The pipe pile was represented as a simple elastic, and a modified Mohr-Coulomb mode
... Show MoreSurvival analysis is one of the types of data analysis that describes the time period until the occurrence of an event of interest such as death or other events of importance in determining what will happen to the phenomenon studied. There may be more than one endpoint for the event, in which case it is called Competing risks. The purpose of this research is to apply the dynamic approach in the analysis of discrete survival time in order to estimate the effect of covariates over time, as well as modeling the nonlinear relationship between the covariates and the discrete hazard function through the use of the multinomial logistic model and the multivariate Cox model. For the purpose of conducting the estimation process for both the discrete
... Show More(Sb2S3)1-xSnx thin films with different concentrations (0, 0.05 and
0.15) and thicknesses (300,500 and 700nm) have been deposited by
single source vacuum thermal evaporation onto glass substrates at
ambient temperature to study the effect of tin content, thickness and
on its structural morphology, and electrical properties. AFM study
revealed that microstructure parameters such as crystallite size, and
roughness found to depend upon deposition conditions. The DC
conductivity of the vacuum evaporated (Sb2S3)1-x Snx thin films was
measured in the temperature range (293-473)K and was found to
increase on order of magnitude with