Shatt al-Arab is the only navigational artery in Iraq, extending from the city of Qurna to its mouth in the Arabian Gulf at the city of Al-Fao within the governorate of Basrah for a length of approximately 204 km. Its width ranges from 400 m to 2000 m, and its depth ranges from 8 m to 20 m. The southern part of it, 93 km long from Umm al-Rassas Island to Ras al-Bisha, represents the international border between Iraq and Iran, where the Thalweg line represents the border between the two countries, which is the deepest point in the riverbed (according to the 1975 Algiers Agreement). The western bank (the Iraqi side) within the common border of Shatt al-Arab is subject to continuous erosion, which leads to the shifting of the Thalweg line towards Iraqi territory and thus leads to loss of Iraqi land to Iran. Reducing flow velocity along the Iraqi side can lead to reducing or preventing erosion in the river. Increasing the riverbed roughness will reduce the velocity of flow and then reducing the erosion. This principle was adopted in this study to investigate the effect of increasing roughness in a strip along a reach of the riverbed on the distribution of longitudinal velocity in cross-sections at the rest of the selected reach. A reach of Shatt al-Arab with a length of 2500 m, located 34 km north of Fao City, was selected to represent the study area. This reach was simulated by using numerical modeling CFD solver (fluent) with three different roughnesses for an upstream part of the river bed and the velocities compared with the natural (original) roughness of Shatt al-Arab. The results showed an appreciable effect of the increased bed roughness on the velocity distribution and the maximum velocity location by shifting it to the other side.
The aim of this study is to propose mathematical expressions for estimation of the flexural strength of plain concrete members from ultrasonic pulse velocity (UPV) measurements. More than two hundred pieces of precast concrete kerb units were subjected to a scheduled test program. The tests were divided into two categories; non-destructive ultrasonic and bending or rupture tests. For each precast unit, direct and indirect (surface) ultrasonic pulses were subjected to the concrete media to measure their travel velocities. The results of the tests were monitored in two graphs so that two mathematical relationships can be drawn. Direct pulse velocity versus the flexural strength was given in the first relationship while the second equation des
... Show MoreThe aim of this study is to propose mathematical expressions for estimation of the flexural strength of plain concrete members from ultrasonic pulse velocity (UPV) measurements. More than two hundred
pieces of precast concrete kerb units were subjected to a scheduled test program. The tests were divided into two categories; non-destructive ultrasonic and bending or rupture tests. For each precast unit, direct and indirect (surface) ultrasonic pulses were subjected to the concrete media to measure their travel velocities. The results of the tests were mointered in two graphs so that two mathematical relationships can be drawn. Direct pulse velocity versus the flexural strength was given in the first relationship while the second equati
Research summary
Praise be to God, and prayers and peace be upon our master Muhammad, his family and companions until the Day of Judgment.
As for after:
It is the right of every nation to take care of its scientific heritage, and to reveal its human civilizational impact, and the Arabs are the richest nations in heritage, as they had in every period of time a sign and pride, the Arabs fulfilled their duty towards humanity, and they carried out a large part of their scientific activity towards humanity.
Therefore, highlighting some of the scientific aspects of the civilized activity of the Arabs, and removing some of the illusions spread by some malicious people, is a human duty before it is a national duty.
... Show MoreThe investigation of the effect of tempering on thermal analysis of
Al-Ti-Si alloy and its composites with MgO and SiC particles was
performed. Thermal analysis was performed before and after
tempering by DSC scan. Optical microscopy was used to identify the
phases and precipitations that may be formed in base alloy and
composites. X-ray diffraction test indicated that the Al3Ti is the main
phase in Al-Ti-Si alloy in addition to form Al5Ti7Si12 phase. Some
chemical reactions can be occurred between reinforcements and
matrix such as MgO.Al2O3 in Al-Ti/MgO, and Al4C3 and Al(OH)3 in
Al-Ti/SiC composite. X-ray florescence technique is used to
investigate the chemical composition of the fabricated specimens.
H
In this study many specimen s were prepared from 2024-T3 Aluminum alloy for corrosion test by the dimensions of (15*15*3) mm according to ASTM G71-31 and then subjected to shot peening process at different time (15, 30, 45) minutes using steel ball having a diameter of 2.75 mm and Rockwell Hardness of 55RC to induce compressive residual stress which were measured using X-Ray diffraction method, surface roughness and hardness were tested before and after peening. Electrochemical corrosion test by Tafel extrapolation method was carried out in an environment of 3 .5% NaCl solutions (sea water) where Corrosion rate calculated using Tafle equation.
The obtained results show a favorable influence of SP treatment
... Show MoreThis study presents the results of atmospheric particulates sampling using high volume air sampler for selected places at Al Tuwaitha nuclear site. The collected samples were analyzed for gross alpha /beta radioactivity using Ludlum model 3030 and measurement particles activity in Al Tuwaitha nuclear site and the surrounding areas for the period from 28/12/2016 to 13/4/2017.The measurement of activity concentrations ranged from (0.42±0.03 to 4.18±0.13) Bq/m3 for alpha particles and from(0.93±0.06 to 9.21±0.26) Bq/m3for beta particles. The activity concentration of nuclides inversely proportional with air temperature and wind speed while humidity is directly proportional with it. Highest value of activity concentration has been found at(
... Show MoreThe design of components subjected to contact stress as local compressive stress is important in engineering application especially in ball and socket Joining. Two kinds of contact stress are introduced in the ball and socket joint, the first is from normal contact while the other is from sliding contact. Although joining two long links (drive shaft in steering cars) will cause the effect of flexural and tensional buckling stress in hollow columns through the ball and socket ends on the failure condition of the joining mechanism. In this paper the consideration of the combined effect of buckling Load and contact stress on the ball and socket joints have been taken, epically on the stress distribution in the contact area. Different
... Show More