Sentiment analysis is one of the major fields in natural language processing whose main task is to extract sentiments, opinions, attitudes, and emotions from a subjective text. And for its importance in decision making and in people's trust with reviews on web sites, there are many academic researches to address sentiment analysis problems. Deep Learning (DL) is a powerful Machine Learning (ML) technique that has emerged with its ability of feature representation and differentiating data, leading to state-of-the-art prediction results. In recent years, DL has been widely used in sentiment analysis, however, there is scarce in its implementation in the Arabic language field. Most of the previous researches address other languages like English. The proposed model tackles Arabic Sentiment Analysis (ASA) by using a DL approach. ASA is a challenging field where Arabic language has a rich morphological structure more than other languages. In this work, Long Short-Term Memory (LSTM) as a deep neural network has been used for training the model combined with word embedding as a first hidden layer for features extracting. The results show an accuracy of about 82% is achievable using DL method.
Abstract
Suffering the human because of pressure normal life of exposure to several types of heart disease as a result of due to different factors. Therefore, and in order to find out the case of a death whether or not, are to be modeled using binary logistic regression model
In this research used, one of the most important models of nonlinear regression models extensive use in the modeling of applications statistical, in terms of heart disease which is the binary logistic regression model. and then estimating the parameters of this model using the statistical estimation methods, another problem will be appears in estimating its parameters, as well as when the numbe
... Show MoreIn this paper we use the Markov Switching model to investigate the link between the level of Iraqi inflation and its uncertainty; forth period 1980-2010 we measure inflation uncertainty as the variance of unanticipated inflation. The results ensure there are a negative effect of inflation level on inflation uncertainty and all so there are a positive effect of inflation uncertainty on inflation level.  
... Show MoreThe optical detectors which had been used in medical applications, and especially in radioactive treatments, need to be modified studied for the effects of radiations on them. This study included preparation of the MnS thin films in a way that vacuum thermal evaporation process at room temperature 27°C with thickness (400+-10nm) nm and a sedimentation rate of 0.39nm/sec on glass floors. The thin films prepared as a detector and had to be treated with neutron irradiation to examine the results gained from this process. The results decay X-ray (XRD) showed that all the prepared thin films have a multi-crystalline structure with the dominance of the direction (111), the two samples were irradiated with a neutron irradiation source (241Am-9Be)
... Show MoreIn this work, functionally graded materials were synthesized by centrifugal technique at different
volume fractions 0.5, 1, 1.5, and 2% Vf with a rotation speed of 1200 rpm and a constant rotation time, T
= 6 min . The mechanical properties were characterized to study the graded and non-graded nanocomposites
and the pure epoxy material. The mechanical tests showed that graded and non-graded added alumina
(Al2O3) nanoparticles enhanced the effect more than pure epoxy. The maximum difference in impact strength
occurred at (FGM), which was loaded from the rich side of the nano-alumina where the maximum value was
at 1% Vf by 133.33% of the sample epoxy side. The flexural strength and Young modulus of the fu
Pathological blood clot in blood vessels, which often leads to cardiovascular diseases, are one of the most common causes of death in humans. Therefore, enzymatic therapy to degrade blood clots is vital. To achieve this goal, bromelain was immobilized and used for the biodegradation of blood clots. Bromelain was extracted from the pineapple fruit pulp (Ananas comosus) and purified by ion exchange chromatography after precipitation with ammonium sulphate (0-80 %), resulting in a yield of 70%, purification fold of 1.42, and a specific activity of 1175 U/mg. Bromelain was covalently immobilized on functionalized multi-walled carbon nanotubes (MWCNT), with an enzyme loading of 71.35%. The results of the characterization of free and immobilized
... Show MoreStriae distensae SD or stretch mark are frequent skin lesion that cause considerable aesthetic concern. The 1064nm long pulsed Nd:YAG Laser has been used to promote an increase in dermal collagen and is known to be a Laser that has a high affinity to vascular chromphores. Also by using fractional CO2 Laser 10600nm as an effective modality in treatment of striae distensae SD. It works to stimulate fibroblast and enhance Collagen formation, which is important for newly generated skin tissue.
Objectives: This study aims to verify the efficacy of long pulsed Nd: YAG Laser (1064nm) in the treatment of immature striae distensae (SD) and the efficacy of C02 fractional Laser (10600nm) in treatment o
... Show MoreThe current study is designed to investigate the histological and immunohistochemical characteristics of the thyroid gland in adult male Sciurus anamalus. This study found that the thyroid gland of the Caucasian squirrel is located in the neck area, below the larynx, on both sides of the trachea. It has two lobes (right and left) with cylindrical shape. The histological studies revealed that the thyroid gland is surrounded by a capsule which consists of connective tissue and forming of two layers which are outer layer and inner layer, and a layer of adipose tissue appears overlapping the outer layer. The inner tissue of the gland consists of follicles with different shapes and sizes, and is lined with simple cuboidal epithelial tissue (foll
... Show MoreLand Use / Land Cover (LULC) classification is considered one of the basic tasks that decision makers and map makers rely on to evaluate the infrastructure, using different types of satellite data, despite the large spectral difference or overlap in the spectra in the same land cover in addition to the problem of aberration and the degree of inclination of the images that may be negatively affect rating performance. The main objective of this study is to develop a working method for classifying the land cover using high-resolution satellite images using object based method. Maximum likelihood pixel based supervised as well as object approaches were examined on QuickBird satellite image in Karbala, Iraq. This study illustrated that
... Show More