Sentiment analysis is one of the major fields in natural language processing whose main task is to extract sentiments, opinions, attitudes, and emotions from a subjective text. And for its importance in decision making and in people's trust with reviews on web sites, there are many academic researches to address sentiment analysis problems. Deep Learning (DL) is a powerful Machine Learning (ML) technique that has emerged with its ability of feature representation and differentiating data, leading to state-of-the-art prediction results. In recent years, DL has been widely used in sentiment analysis, however, there is scarce in its implementation in the Arabic language field. Most of the previous researches address other languages like English. The proposed model tackles Arabic Sentiment Analysis (ASA) by using a DL approach. ASA is a challenging field where Arabic language has a rich morphological structure more than other languages. In this work, Long Short-Term Memory (LSTM) as a deep neural network has been used for training the model combined with word embedding as a first hidden layer for features extracting. The results show an accuracy of about 82% is achievable using DL method.
The Coronavirus Disease 2019 (COVID-19) pandemic has caused an unprecedented disruption in medical education and healthcare systems worldwide. The disease can cause life-threatening conditions and it presents challenges for medical education, as instructors must deliver lectures safely, while ensuring the integrity and continuity of the medical education process. It is therefore important to assess the usability of online learning methods, and to determine their feasibility and adequacy for medical students. We aimed to provide an overview of the situation experienced by medical students during the COVID-19 pandemic, and to determine the knowledge, attitudes, and practices of medical students regarding electronic medical education.
... Show MoreThis paper proposed a new method to study functional non-parametric regression data analysis with conditional expectation in the case that the covariates are functional and the Principal Component Analysis was utilized to de-correlate the multivariate response variables. It utilized the formula of the Nadaraya Watson estimator (K-Nearest Neighbour (KNN)) for prediction with different types of the semi-metrics, (which are based on Second Derivative and Functional Principal Component Analysis (FPCA)) for measureing the closeness between curves. Root Mean Square Errors is used for the implementation of this model which is then compared to the independent response method. R program is used for analysing data. Then, when the cov
... Show MoreTranslation is a dynamic and living process that cannot be considered equal to the original text and requires the appropriate structure, language, thought and culture of the target language, and the translator's intellectual, linguistic and cultural influences inadvertently penetrate into the translated text. It causes heterogeneity of the destination text with the source text.
Admiral's theory is trying to help by providing components and suggested approaches to resolve these inconsistencies. In the meantime, in addition to the mission of putting words together, the translator must sometimes sit in the position of the reader and judge and evaluate the translated text in order to understand its shortcomings and try to correct it a
... Show MoreDust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system
... Show MoreNumerous blood biomarkers are altered in COVID-19 patients; however, no early biochemical markers are currently being used in clinical practice to predict COVID-19 severity. COVID-19, the most recent pandemic, is caused by the SRS-CoV-2 coronavirus. The study was aimed to identify patient groups with a high and low risk of developing COVID-19 using a cluster analysis of several biomarkers. 137 women with confirmed SARS CoV-2 RNA testing were collected and analyzed for biochemical profiles. Two-dimensional automated hierarchy clustering of all biomarkers was applied, and patients were sorted into classes. Biochemistry marker variations (Ferritin, lactate dehydrogenase LDH, D-dimer, and C- reactive protein CRP) have split COVID-19 patien
... Show MoreThe current study aims to apply the methods of evaluating investment decisions to extract the highest value and reduce the economic and environmental costs of the health sector according to the strategy.In order to achieve the objectives of the study, the researcher relied on the deductive approach in the theoretical aspect by collecting sources and previous studies. He also used the applied practical approach, relying on the data and reports of Amir almuminin Hospital for the period (2017-2031) for the purpose of evaluating investment decisions in the hospital. A set of conclusions, the most important of which is: The failure to apply
... Show MoreObjectives: The study aimed to evaluate health behavior, evaluate Health Action Process Approach, determine the effectiveness of the Health Action Process Approach based the application of program on students’ engaging in regular physical exercise.
Methodology: The research design for this study was a quasi-experimental. The study sample included high school male students, the final sample size was(160 ) Non-probability sampling (convenience sample) are chosen, (80) students study group and (80) students control group.
Results: The results show there was no statistically significant difference in the HAPA constructs among family's socioeconomic class groups and less tha
... Show More