Sentiment analysis is one of the major fields in natural language processing whose main task is to extract sentiments, opinions, attitudes, and emotions from a subjective text. And for its importance in decision making and in people's trust with reviews on web sites, there are many academic researches to address sentiment analysis problems. Deep Learning (DL) is a powerful Machine Learning (ML) technique that has emerged with its ability of feature representation and differentiating data, leading to state-of-the-art prediction results. In recent years, DL has been widely used in sentiment analysis, however, there is scarce in its implementation in the Arabic language field. Most of the previous researches address other languages like English. The proposed model tackles Arabic Sentiment Analysis (ASA) by using a DL approach. ASA is a challenging field where Arabic language has a rich morphological structure more than other languages. In this work, Long Short-Term Memory (LSTM) as a deep neural network has been used for training the model combined with word embedding as a first hidden layer for features extracting. The results show an accuracy of about 82% is achievable using DL method.
This research provides a new method to study praise poetry that can be used as a course to teach English and Arabic to students in the College of Education. This research answers two questions:
- Is it possible to examine praise poetry as a tagmeme?
- Is this analysis of great help in teaching English and Arabic to students in the College of Education?
The data that will be chosen for the purpose of analysis are two of Shakespeare's sonnets and two of AL Mulik's poems. The sonnets selected for this purpose are 17 and 18. AL Mulik's poems selected for the same purpose are 8 and 9.
&nbs
... Show MoreTo maintain a sustained competitive position in the contemporary environment of knowledge economy, organizations as an open social systems must have an ability to learn and know how to adapt to rapid changes in a proper fashion so that organizational objectives will be achieved efficiently and effectively. A multilevel approach is adopted proposing that organizational learning suffers from the lack of interest about the strategic competitive performance of the organization. This remains implicit almost in all models of organizational learning and there is little focus on how learning organizations achieve sustainable competitive advantage . A dynamic model that captures t
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreWar as a human phenomenon, has its own literature. Poetry is a major genre in this literature. This paper is an attempt to investigate and analyse some stylistic features in two selected, English and Arabic, war poems. These poems share the same theme.Both promote the principle of sacrificing one’s own life for the sake of homeland. This paper limits itself to analyse, thecontent words, tenses, semantic grouping of vocabulary and foregrounding in the two poems. The areas of analysis show great similarities in distributing the general content words (nouns, verbs, adjectives, and adverbs). In the analysis of the semantic areas of each content word, these poems reveal some similarities and some differences in their frequency rates.
... Show MoreIts well known that understanding human facial expressions is a key component in understanding emotions and finds broad applications in the field of human-computer interaction (HCI), has been a long-standing issue. In this paper, we shed light on the utilisation of a deep convolutional neural network (DCNN) for facial emotion recognition from videos using the TensorFlow machine-learning library from Google. This work was applied to ten emotions from the Amsterdam Dynamic Facial Expression Set-Bath Intensity Variations (ADFES-BIV) dataset and tested using two datasets.
Abstract
This study aimed to identify the business risks using the approach of the client strategy analysis in order to improve the efficiency and effectiveness of the audit process. A study of business risks and their impact on the efficiency and effectiveness of the audit process has been performed to establish a cognitive framework of the main objective of this study, in which the descriptive analytical method has been adopted. A survey questionnaire has been developed and distributed to the targeted group of audit firms which have profession license from the Auditors Association in the Gaza Strip (63 offices). A hundred questionnaires have been distributed to the study sample of which, a total of 84 where answered and
... Show MoreAbstract Purpose of research: The purpose of the article is to conduct a comparative analysis of the concept and types of puns in the Russian and Arabic languages. The main focus is on identifying similarities and differences in the definition of a pun, as well as analyzing its various types in both languages. The purpose of the study is to understand how puns are used to achieve comic or semantic effect in different cultural contexts. Methods: The study includes an analysis of literature providing information about puns in Russian and Arabic. For comparative analysis, methods were used to compare concepts, definitions and types of puns in both languages. The phonetic, semantic and syntactic aspects of the pun are considered, and cultural f
... Show MoreThis paper presents a nonlinear finite element modeling and analysis of steel fiber reinforced concrete (SFRC) deep beams with and without openings in web subjected to two- point loading. In this study, the beams were modeled using ANSYS nonlinear finite element
software. The percentage of steel fiber was varied from 0 to 1.0%.The influence of fiber content in the concrete deep beams has been studied by measuring the deflection of the deep beams at mid- span and marking the cracking patterns, compute the failure loads for each deep beam, and also study the shearing and first principal stresses for the deep beams with and without openings and with different steel fiber ratios. The above study indicates that the location of openings an