Preferred Language
Articles
/
joe-1076
Artificial Neural Network (ANN) for Prediction of Viscosity Reduction of Heavy Crude Oil using Different Organic Solvents
...Show More Authors

The increase globally fossil fuel consumption as it represents the main source of energy around the world, and the sources of heavy oil more than light, different techniques were used to reduce the viscosity and increase mobility of heavy crude oil. this study focusing on the experimental tests  and modeling with Back Feed Forward Artificial Neural Network (BFF-ANN) of the dilution technique to reduce a  heavy oil viscosity that was collected from the south- Iraq oil fields using organic solvents, organic diluents with different weight percentage  (5, 10 and  20 wt.% )  of  (n-heptane, toluene, and a mixture of  different ratio toluene / n-Heptane)  at constant temperature. Experimentally the higher viscosity reduction was about from 135.6 to 26.33 cP when the mixture of toluene/heptane (75/25 vol. %) was added. The input parameters for the model were solvent type, wt. % of solvent, RPM and shear rate, the results have been demonstrated that the proposed model has superior performance, where the obtained value of R was greater than 0.99 which confirms a good agreement between the correlation and experimental data, the predicate for reduced viscosity and DVR was with accuracy 98.7%, on the other hand, the μ and DVR% factors were closer to unity for the ANN model.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Aug 01 2017
Journal Name
Catalysis Science & Technology
Decomposition of selected chlorinated volatile organic compounds by ceria (CeO 2)
...Show More Authors

Chlorinated volatile organic compounds (CVOCs) are toxic chemical entities emitted invariably from stationary thermal operations when a trace of chlorine is present. Replacing the high-temperature destruction operations of these compounds with catalytic oxidation has led to the formulation of various potent metal oxides catalysts; among them are ceria-based materials. Guided by recent experimental measurements, this study theoretically investigates the initial steps operating in the interactions of ceria surface CeO2(111) with three CVOC model compounds, namely chloroethene (CE), chloroethane (CA) and chlorobenzene (CB). We find that, the CeO2(111) surface mediates fission of the carbon–chlorine bonds in the CE, CA and CB molecules via mo

... Show More
Publication Date
Mon Aug 29 2022
Journal Name
Journal Of Inorganic And Organometallic Polymers And Materials
The Recent Advances of Metal–Organic Frameworks in Electric Vehicle Batteries
...Show More Authors

High-power density supercapacitors and high-energy–density batteries have gotten a lot of interest since they are critical for the power supply of future electric cars, portable electronic gadgets, unmanned aircraft, and so on. The electrode materials used in supercapacitors and batteries have a significant impact on the practical energy and power density. Metal–organic frameworks (MOFs) have the outstanding electrochemical ability because of their ultrahigh porous structure, ease of functionalization, and great specific surface area. These features make it an intriguing electrode material with good electrochemical efficiency for high-storage batteries. Thus, this review summarizes current developments in MOFs-based materials as an elec

... Show More
View Publication
Scopus (6)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Tue Mar 20 2018
Journal Name
Day 2 Wed, March 21, 2018
Numerical Approach for the Prediction of Formation and Hydraulic Fracture Properties Considering Elliptical Flow Regime in Tight Gas Reservoirs
...Show More Authors
Abstract<p>As tight gas reservoirs (TGRs) become more significant to the future of the gas industry, investigation into the best methods for the evaluation of field performance is critical. While hydraulic fractured well in TRGs are proven to be most viable options for economic recovery of gas, the interpretation of pressure transient or well test data from hydraulic fractured well in TGRs for the accurate estimation of important reservoirs and fracture properties (e.g. fracture length, fracture conductivity, skin and reservoir permeability) is rather very complex and difficult because of the existence of multiple flow profiles/regimes. The flow regimes are complex in TGRs due to the large hydraulic fractures n</p> ... Show More
View Publication
Scopus (14)
Crossref (8)
Scopus Crossref
Publication Date
Mon Oct 01 2012
Journal Name
Journal Of Engineering
Prediction of Smear Effect on the Bearing Capacity of Driven Piles
...Show More Authors

This paper deals with prediction the effect of soil re-moulding (smear) on the ultimate bearing capacity of driven piles. The proposed method based on detecting the decrease in ultimate bearing capacity of the pile shaft (excluding the share of pile tip) after sliding downward. This was done via conducting an experimental study on three installed R.C piles in a sandy clayey silt soil. The piles were installed so that a gap space is left between its tip and the base of borehole. The piles were tested for ultimate bearing capacity according to ASTM D1143 in three stages. Between each two stages the pile was jacked inside the borehole until a sliding of about 200mm is achieved to simulate the soil re-moulding due to actual pile driving. The re

... Show More
Publication Date
Tue Jun 01 2021
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Surface Roughness after Turning of Duplex Stainless Steel (DSS)
...Show More Authors

Feed Forward Back Propagation artificial neural network (ANN) model utilizing the MATLAB Neural Network Toolbox is designed for the prediction of surface roughness of Duplex Stainless Steel during orthogonal turning with uncoated carbide insert tool. Turning experiments were performed at various process conditions (feed rate, cutting speed, and cutting depth). Utilizing the Taguchi experimental design method, an optimum ANN architecture with the Levenberg-Marquardt training algorithm was obtained. Parametric research was performed with the optimized ANN architecture to report the impact of every turning parameter on the roughness of the surface. The results suggested that machining at a cutting speed of 355 rpm with a feed rate of 0.07 m

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sat Oct 06 2012
Journal Name
Journal Of Engineering
Prediction of Smear Effect on the Bearing Capacity of Driven Piles
...Show More Authors

Publication Date
Sat Jul 22 2023
Journal Name
Journal Of Engineering
Prediction of Smear Effect on the Bearing Capacity of Driven Piles
...Show More Authors

This paper deals with prediction the effect of soil remoulding (smear) on the ultimate bearing capacity of driven piles. The proposed method based on detecting the decrease in ultimate bearing capacity of the pile shaft (excluding the share of pile tip) after sliding downward. This was done via conducting an experimental study on three installed R.C piles in a sandy clayey silt soil. The piles were installed so that a gap space is left between its tip and the base of borehole. The piles were tested for ultimate bearing capacity
according to ASTM D1143 in three stages. Between each two stages the pile was jacked inside the borehole until a sliding of about 200mm is achieved to simulate the soil remoulding due to actual pile driving. T

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Engineering
Different Resolution Merging Methods For Environmental Areas Extraction
...Show More Authors

The usage of remote sensing techniques in managing and monitoring the environmental areas is increasing due to the improvement of the sensors used in the observation satellites around the earth. Resolution merge process is used to combine high resolution one band image with another one that have low resolution multi bands image to produce one image that is high in both spatial and spectral resolution. In this work different merging methods were tested to evaluate their enhancement capabilities to extract different environmental areas; Principle component analysis (PCA), Brovey, modified (Intensity, Hue ,Saturation) method and High Pass Filter methods were tested and subjected to visual and statistical comparison for evaluation. Both visu

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
International Journal Of Intelligent Systems And Applications In Engineering
Artificial Intelligence Based Statistical Process Control for Monitoring and Quality Control of Water Resources: A Complete Digital Solution
...Show More Authors

Scopus (5)
Scopus
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
The Effect of White Rot Fungus (Ganoderma sp) as Decomposers on Composting Using Combination of Cattle Feces and Water Hyacinth (Eichhornia crassipes) as Organic Matter
...Show More Authors

In Indonesia, cattle feces (CF) and water hyacinth (WH) plants are abundant but have not been widely revealed. The use of microorganisms as decomposers in the fermentation process has not been widely applied, so researchers are interested in studying further. This study was to evaluate the effect of the combination of CF with WH on composting by applying white-rot fungal (WRF) (Ganoderma sp) microorganism as a decomposer. A number of six types of treatment compared to R1(ratio of CF:WH)(25%:75%)+WRF; R2(ratio of CF:WH)(50%:50%)+WRF; R3(ratio of CF:WH)(75%:25%)+WRF; R4(ratio of CF:WH)(25%:75%) without WRF; R5(ratio of CF:WH)(50%:50%) without WRF; R6(ratio of CF:WH)

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref