Preferred Language
Articles
/
joe-1076
Artificial Neural Network (ANN) for Prediction of Viscosity Reduction of Heavy Crude Oil using Different Organic Solvents
...Show More Authors

The increase globally fossil fuel consumption as it represents the main source of energy around the world, and the sources of heavy oil more than light, different techniques were used to reduce the viscosity and increase mobility of heavy crude oil. this study focusing on the experimental tests  and modeling with Back Feed Forward Artificial Neural Network (BFF-ANN) of the dilution technique to reduce a  heavy oil viscosity that was collected from the south- Iraq oil fields using organic solvents, organic diluents with different weight percentage  (5, 10 and  20 wt.% )  of  (n-heptane, toluene, and a mixture of  different ratio toluene / n-Heptane)  at constant temperature. Experimentally the higher viscosity reduction was about from 135.6 to 26.33 cP when the mixture of toluene/heptane (75/25 vol. %) was added. The input parameters for the model were solvent type, wt. % of solvent, RPM and shear rate, the results have been demonstrated that the proposed model has superior performance, where the obtained value of R was greater than 0.99 which confirms a good agreement between the correlation and experimental data, the predicate for reduced viscosity and DVR was with accuracy 98.7%, on the other hand, the μ and DVR% factors were closer to unity for the ANN model.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Apr 15 2022
Journal Name
Sustainability
Evaluation of Physio-Chemical Characteristics of Bio Fertilizer Produced from Organic Solid Waste Using Composting Bins
...Show More Authors

Background: The possibility of converting the organic fraction of municipal solid waste to mature compost using the composting bin method was studied. Nine distinct treatments were created by combining municipal solid waste (MSW) with animal waste (3:1, 2:1), poultry manure (3:1, 2:1), mixed waste (2:1:1), agricultural waste (dry leaves), biocont (Trichoderm hazarium), and humic acid. Weekly monitoring of temperature, pH, EC, organic matter (OM percent), and the C/N ratio was performed, and macronutrients (N, P, K) were measured. Trace elements, including heavy metals (Cd and Pb), were tested in the first and final weeks of maturity. Results: Temperatures in the first days of composting reached the thermophilic phase in MSW compost

... Show More
View Publication
Scopus (20)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Fri Apr 15 2022
Journal Name
Sustainability
Evaluation of Physio-Chemical Characteristics of Bio Fertilizer Produced from Organic Solid Waste Using Composting Bins
...Show More Authors

Background: The possibility of converting the organic fraction of municipal solid waste to mature compost using the composting bin method was studied. Nine distinct treatments were created by combining municipal solid waste (MSW) with animal waste (3:1, 2:1), poultry manure (3:1, 2:1), mixed waste (2:1:1), agricultural waste (dry leaves), biocont (Trichoderm hazarium), and humic acid. Weekly monitoring of temperature, pH, EC, organic matter (OM percent), and the C/N ratio was performed, and macronutrients (N, P, K) were measured. Trace elements, including heavy metals (Cd and Pb), were tested in the first and final weeks of maturity. Results: Temperatures in the first days of composting reached the thermophilic phase in MSW compost

... Show More
View Publication
Scopus (21)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Fri Nov 01 2013
Journal Name
Isesco Journal Of Science And Technology
Effect of Solvents on the Dipole Moments and Fluorescence Quantum Yield of Rhodamine Dyes
...Show More Authors

Abstract: This study aims to investigate the effects of solvents of various polarities on the electronic absorption and fluorescence spectra of RhB and Rh6G. The singlet‐state excited dipole moments (me) and ground state dipole moments (mg) were estimated from the equations of Bakshiev -Kawski and Chamma‐ Viallet using the variation of Stokes shift along with the solvent’s dielectric constant (e) and refractive indexes (n). The observed singlet‐state excited dipole moments were found to be larger than the ground‐state ones. Moreover, the obtained fluorescence quantum yield values were influenced by the environment of the fluorescing molecule. Consequently, the concentration of the dye solution, excited singlet state absorption and

... Show More
Preview PDF
Publication Date
Sun Mar 30 2025
Journal Name
Iraqi Journal Of Science
Segmentation of Aerial Images Using Different Clustering Techniques
...Show More Authors

The segmentation of aerial images using different clustering techniques offers valuable insights into interpreting and analyzing such images. By partitioning the images into meaningful regions, clustering techniques help identify and differentiate various objects and areas of interest, facilitating various applications, including urban planning, environmental monitoring, and disaster management. This paper aims to segment color aerial images to provide a means of organizing and understanding the visual information contained within the image for various applications and research purposes. It is also important to look into and compare the basic workings of three popular clustering algorithms: K-Medoids, Fuzzy C-Mean (FCM), and Gaussia

... Show More
View Publication
Scopus Crossref
Publication Date
Sun Dec 31 2000
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Production of Castor Oil for Medical Uses
...Show More Authors

View Publication Preview PDF
Publication Date
Mon Dec 18 2017
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Surface Roughness and Material Removal Rate in Electrochemical Machining Using Taguchi Method
...Show More Authors

Electrochemical machining is one of the widely used non-conventional machining processes to machine complex and difficult shapes for electrically conducting materials, such as super alloys, Ti-alloys, alloy steel, tool steel and stainless steel.  Use of optimal ECM process conditions can significantly reduce the ECM operating, tooling, and maintenance cost and can produce components with higher accuracy. This paper studies the effect of process parameters on surface roughness (Ra) and material removal rate (MRR), and the optimization of process conditions in ECM. Experiments were conducted based on Taguchi’s L9 orthogonal array (OA) with three process parameters viz. current, electrolyte concentration, and inter-electrode gap. Sig

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Engineering
Prediction of Monthly Fluoride Content in Tigris River using SARIMA Model in R Software
...Show More Authors

The need to create the optimal water quality management process has motivated researchers to pursue prediction modeling development. One of the widely important forecasting models is the sessional autoregressive integrated moving average (SARIMA) model. In the present study, a SARIMA model was developed in R software to fit a time series data of monthly fluoride content collected from six stations on Tigris River for the period from 2004 to 2014. The adequate SARIMA model that has the least Akaike's information criterion (AIC) and mean squared error (MSE) was found to be SARIMA (2,0,0) (0,1,1). The model parameters were identified and diagnosed to derive the forecasting equations at each selected location. The correlation coefficien

... Show More
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Engineering
Prediction of Monthly Fluoride Content in Tigris River using SARIMA Model in R Software
...Show More Authors

The need to create the optimal water quality management process has motivated researchers to pursue prediction modeling development. One of the widely important forecasting models is the sessional autoregressive integrated moving average (SARIMA) model. In the present study, a SARIMA model was developed in R software to fit a time series data of monthly fluoride content collected from six stations on Tigris River for the period from 2004 to 2014. The adequate SARIMA model that has the least Akaike's information criterion (AIC) and mean squared error (MSE) was found to be SARIMA (2, 0, 0) (0,1,1). The model parameters were identified and diagnosed to derive the forecasting equations at each selected location. The correlat

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 01 2019
Journal Name
Journal Of Ecological Engineering
Biosorption of Heavy Metals from Synthetic Wastewater by Using Macro Algae Collected from Iraqi Marshlands
...Show More Authors

View Publication
Scopus (17)
Crossref (16)
Scopus Clarivate Crossref
Publication Date
Thu Aug 31 2023
Journal Name
Journal Européen Des Systèmes Automatisés​
Deep Learning Approach for Oil Pipeline Leakage Detection Using Image-Based Edge Detection Techniques
...Show More Authors

Natural gas and oil are one of the mainstays of the global economy. However, many issues surround the pipelines that transport these resources, including aging infrastructure, environmental impacts, and vulnerability to sabotage operations. Such issues can result in leakages in these pipelines, requiring significant effort to detect and pinpoint their locations. The objective of this project is to develop and implement a method for detecting oil spills caused by leaking oil pipelines using aerial images captured by a drone equipped with a Raspberry Pi 4. Using the message queuing telemetry transport Internet of Things (MQTT IoT) protocol, the acquired images and the global positioning system (GPS) coordinates of the images' acquisition are

... Show More
View Publication
Scopus (13)
Crossref (6)
Scopus Crossref