Preferred Language
Articles
/
joe-1076
Artificial Neural Network (ANN) for Prediction of Viscosity Reduction of Heavy Crude Oil using Different Organic Solvents
...Show More Authors

The increase globally fossil fuel consumption as it represents the main source of energy around the world, and the sources of heavy oil more than light, different techniques were used to reduce the viscosity and increase mobility of heavy crude oil. this study focusing on the experimental tests  and modeling with Back Feed Forward Artificial Neural Network (BFF-ANN) of the dilution technique to reduce a  heavy oil viscosity that was collected from the south- Iraq oil fields using organic solvents, organic diluents with different weight percentage  (5, 10 and  20 wt.% )  of  (n-heptane, toluene, and a mixture of  different ratio toluene / n-Heptane)  at constant temperature. Experimentally the higher viscosity reduction was about from 135.6 to 26.33 cP when the mixture of toluene/heptane (75/25 vol. %) was added. The input parameters for the model were solvent type, wt. % of solvent, RPM and shear rate, the results have been demonstrated that the proposed model has superior performance, where the obtained value of R was greater than 0.99 which confirms a good agreement between the correlation and experimental data, the predicate for reduced viscosity and DVR was with accuracy 98.7%, on the other hand, the μ and DVR% factors were closer to unity for the ANN model.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jan 02 2012
Journal Name
Journal Of Engineering
3-D Object Recognition using Multi-Wavelet and Neural Network
...Show More Authors

This search has introduced the techniques of multi-wavelet transform and neural network for recognition 3-D object from 2-D image using patches. The proposed techniques were tested on database of different patches features and the high energy subband of discrete multi-wavelet transform DMWT (gp) of the patches. The test set has two groups, group (1) which contains images, their (gp) patches and patches features of the same images as a part of that in the data set beside other images, (gp) patches and features, and group (2) which contains the (gp) patches and patches features the same as a part of that in the database but after modification such as rotation, scaling and translation. Recognition by back propagation (BP) neural network as com

... Show More
View Publication
Publication Date
Tue Dec 12 2017
Journal Name
Al-khwarizmi Engineering Journal
Model Reference Adaptive Control based on a Self-Recurrent Wavelet Neural Network Utilizing Micro Artificial Immune Systems
...Show More Authors

Abstract 

This paper presents an intelligent model reference adaptive control (MRAC) utilizing a self-recurrent wavelet neural network (SRWNN) to control nonlinear systems. The proposed SRWNN is an improved version of a previously reported wavelet neural network (WNN). In particular, this improvement was achieved by adopting two modifications to the original WNN structure. These modifications include, firstly, the utilization of a specific initialization phase to improve the convergence to the optimal weight values, and secondly, the inclusion of self-feedback weights to the wavelons of the wavelet layer. Furthermore, an on-line training procedure was proposed to enhance the control per

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Detection of Autism Spectrum Disorder Using A 1-Dimensional Convolutional Neural Network
...Show More Authors

Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D

... Show More
View Publication Preview PDF
Scopus (32)
Crossref (22)
Scopus Crossref
Publication Date
Thu Mar 06 2025
Journal Name
Aip Conference Proceedings
Solving 5th order nonlinear 4D-PDEs using efficient design of neural network
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Fri Dec 06 2019
Journal Name
Ssociation Of Arab Universities Journal Of Engineering Sciences
Application of Artificial Neural Network and GeographicalInformation System Models to Predict and Evaluate the Quality ofDiyala River Water, Iraq
...Show More Authors

This research discusses application Artificial Neural Network (ANN) and Geographical InformationSystem (GIS) models on water quality of Diyala River using Water Quality Index (WQI). Fourteen water parameterswere used for estimating WQI: pH, Temperature, Dissolved Oxygen, Orthophosphate, Nitrate, Calcium, Magnesium,Total Hardness, Sodium, Sulphate, Chloride, Total Dissolved Solids, Electrical Conductivity and Total Alkalinity.These parameters were provided from the Water Resources Ministryfrom seven stations along the river for the period2011 to 2016. The results of WQI analysis revealed that Diyala River is good to poor at the north of Diyala provincewhile it is poor to very polluted at the south of Baghdad City. The selected parameters wer

... Show More
Publication Date
Thu Nov 21 2019
Journal Name
Journal Of Engineering
Automatic Determination of Liquid's Interface in Crude Oil Tank using Capacitive Sensing Techniques
...Show More Authors

The petroleum sector has a significant influence on the development of multiphase detection sensor techniques; to separate the crude oil from water, the crude oil tank is used. In this paper, a measuring system using a simple and low cost two parallel plate capacitance sensor is designed and implemented based on a Micro controlled embedded system plus PC to automatically identify the (gas/oil) and (oil/water) dynamic multi-interface in the crude oil tank. The Permittivity differences of two-phase liquids are used to determine the interface of them by measuring the relative changes of the sensor’s capacitance when passes through the liquid’s interface. The experiment results to determine the liquid’s interface is sa

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Nov 09 2021
Journal Name
Abu Dhabi International Petroleum Exhibition & Conference
Numerical Simulation of Gas Lift Optimization Using Artificial Intelligence for a Middle Eastern Oil Field
...Show More Authors
Abstract<p>Artificial lift techniques are a highly effective solution to aid the deterioration of the production especially for mature oil fields, gas lift is one of the oldest and most applied artificial lift methods especially for large oil fields, the gas that is required for injection is quite scarce and expensive resource, optimally allocating the injection rate in each well is a high importance task and not easily applicable. Conventional methods faced some major problems in solving this problem in a network with large number of wells, multi-constrains, multi-objectives, and limited amount of gas. This paper focuses on utilizing the Genetic Algorithm (GA) as a gas lift optimization algorit</p> ... Show More
View Publication
Scopus (8)
Crossref (5)
Scopus Crossref
Publication Date
Mon Oct 01 2018
Journal Name
2018 Ieee/acs 15th International Conference On Computer Systems And Applications (aiccsa)
Utilizing Hopfield Neural Network for Pseudo-Random Number Generator
...Show More Authors

View Publication
Scopus (11)
Crossref (9)
Scopus Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Iaes International Journal Of Artificial Intelligence
Reduced hardware requirements of deep neural network for breast cancer diagnosis
...Show More Authors

Identifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Economics And Administrative Sciences
Statistical Methods for Controlling the Quality of Crude Oil Products in Iraq
...Show More Authors

The purpose of this study is to measure the levels of quality control for some crude oil products in Iraqi refineries, and how they are close to the international standards, through the application of statistical methods in quality control of oil products in Iraqi refineries. Where the answers of the study sample were applied to a group of Iraqi refinery employees (Al-Dora refinery, Al-Nasiriyah refinery, and Al-Basra refinery) on the principles of quality management control, and according to the different personal characteristics (gender, age, academic qualification, number of years of experience, job level). In order to achieve the objectives of the study, a questionnaire that included (12) items, in order to collect preliminary inform

... Show More
View Publication Preview PDF
Crossref