Greywater is a possible water source that can be improved for meeting the quality required for irrigation. Treatment of greywater can range from uncomplicated coarse filtration to advanced biological treatment. This article presents a simple design of a small scale greywater treatment plant, which is a series of physical and natural processes including screening, aeration, sedimentation, and filtration using granular activated carbon filter and differentiates its performance with sand filter. The performance of these units with the dual filter media of (activated carbon with sand) in treatment of greywater from Iraqi house in Baghdad city during 2019 and that collected from several points including washbasins, kitchen sink, bathrooms, and laundry, was recorded in terms of removal efficiency of particular pollutants like Turbidity 94%, chemical oxygen demand (COD) 93%, and oil 91%. Dual filter was the most effective filter for decreasing these pollutants, while sand indicates the lowest removal efficiency. In general, granular activated carbon media seemed to be the most proper medium to improve greywater quality for reaching the quality of irrigation within the terms of organic matter decrease. Accordingly, this technology may be reliable for greywater treatment in a residential area.
In this study, the optimum conditions for COD removal from petroleum refinery wastewater by using a combined electrocoagulation- electro-oxidation system were attained by Taguchi method. An orthogonal array experimental design (L18) which is of four controllable parameters including NaCl concentration, C.D. (current density), PH, and time (time of electrolysis) was employed. Chemical oxygen demand (COD) removal percentage was considered as the quality characteristics to be enhanced. Also, the value of turbidity and TDS (total dissolved solid) were estimated. The optimum levels of the studied parameters were determined precisely by implementing S/N analysis and analysis of variance (ANOVA). The optimum conditions were found to be NaCl = 2.5
... Show MoreBN Rashid
Two EM techniques, terrain conductivity and VLF-Radiohm resistivity (using two
different instruments of Geonics EM 34-3 and EMI6R respectively) have been applied to
evaluate their ability in delineation and measuring the depth of shallow subsurface cavities
near Haditha city.
Thirty one survey traverses were achieved to distinguish the subsurface cavities in the
investigated area. Both EM techniques are found to be successfiul tools in study area.
Planning of electrical distribution networks is considered of highest priority at the present time in Iraq, due to the huge increase in electrical demand and expansions imposed on distribution networks as a result of the great and rapid urban development.
Distribution system planning simulates and studies the behavior of electrical distribution networks under different operating conditions. The study provide understanding of the existing system and to prepare a short term development plan or a long term plan used to guide system expansion and future investments needed for improved network performance.
The objective of this research is the planning of Al_Bayaa 11 kV distribution network in Baghdad city bas
... Show MoreThe quality of groundwater should be improved by keeping safe water sources from contaminants in protective way by doing regular measuring and checkup before it supplied for usage. Private Wells do not receive the same services that wells supplying the public do. Well owners are responsible for protecting their drinking water. This work was carried out in Badra city, Iraq from December 2017 to May 2018, six wells water were investigated to determine the general characteristics of wells as well as studying the effect of environmental factors on the quality of water. The average of six wells were eleven parameters that is out of permissible limits were EC, Sal., Alk., TH, TDS, Na, Ca, Cl, SO4, Fe, Zn (4402-5183 /cm, 2.76-3.9 ppt
... Show More<p>Photovoltaic (PV) systems are becoming increasingly popular; however, arc faults on the direct current (DC) side are becoming more widespread as a result of the effects of aging as well as the trend toward higher DC voltage levels, posing severe risk to human safety and system stability. The parallel arc faults present higher level of current as compared with the series arc faults, making it more difficult to spot the series arc. In this paper and for the aim of condition monitoring, the features of a DC series arc fault are analyzed by analysing the arc features, performing model’s simulation in PSCAD, and carrying out experimental studies. Various arc models are simulated and investigated; for low current arcs, the heur
... Show More