Preferred Language
Articles
/
joe-1025
Adsorption of Methylene Blue on Prepared Charcoal from Molasses Waste
...Show More Authors

Recently, important efforts have been made in an attempt to search for the cheapest and ecofriendly alternatives adsorbents. In the present work, waste molasses from Iraqi date palm (Zahdi) had been used as a provenance to produce charcoal for the removal of methylene blue (MB) dye from water. The optimum prepared charcoal was obtained at 150 C, by increasing temperature to 175 C, the charcoal had almost converted to ash. The obtained charcoal have been inspected for properties using scanning electron microscope (SEM), atomic force microscope (AFM), porosity and surface area. Adsorption data were optimized to Langmuir and Freundlich and adsorption parameters have been evaluated. The thermodynamic parameters like a change in Gipps energy (ΔG), enthalpy (ΔH) and entropy (ΔS). The effects of increasing temperature on adsorption capacity were investigated and the results indicate that pseudo-second-order kinetics model could be presented the adsorption dynamic data. The resultant values for the heat of adsorption and the free energy indicated that adsorption of methylene blue dye is preferred at low temperatures.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Oct 11 2021
Journal Name
Nano Hybrids And Composites
Far Infrared Laser Detector Based on Multi-Walled Carbon Nanotubes and Blend of (Polyaniline - Polymethyl Methacrylate) Polymers with Methyl Blue Dye for Photoconductive Applications
...Show More Authors

Infrared photoconductive detectors working in the far-infrared region and room temperature were fabricated. The detectors were fabricated using three types of carbon nanotubes (CNTs); MWCNTs, COOH-MWCNTs, and short-MWCNTs. The carbon nontubes suspension is deposited by dip coating and drop–casting techniques to prepare thin films of CNTs. These films were deposited on porous silicon (PSi) substrates of n-type Si. The I-V characteristics and the figures of merit of the fabricated detectors were measured at a forward bias voltage of 3 and 5 volts as well as at dark and under illumination by IR radiation from a CO2 laser of 10.6 μm wavelengths and power of 2.2 W. The responsivity and figures of merit of the photoconductive detector

... Show More
View Publication
Crossref (1)
Clarivate Crossref
Publication Date
Mon Mar 04 2024
Journal Name
Journal Of Engineering
REMOVAL OF DIRECT BLUE DYE IN TEXTILEWASTEWATER EFFLUENT BY ELECTROCOAGULATION
...Show More Authors

 Removal of direct blue dye by electrocoagulation method has been investigated using aluminum   electrode in a bench-scale electrochemical system. Current density, NaCl concentration,   electrocoagulation time, and dye concentration has been studied as effecting parameters in color   removal efficiency. Increasing of current density will increase the color removal efficiency and   energy consumption as well. While increasing NaCl concentration increase the color removal   efficiency but it decrease energy consumption. High dye concentration is needed for extra   electrocaogolation time to reach the same efficiency that obtained with low dye concentration .With   current applied 0.35 amps. and NaCl concentration of 2 g/l more

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Sun Jun 30 2013
Journal Name
Al-khwarizmi Engineering Journal
Thermodynamic and Kinetic Study of the Adsorption of Pb (II) from Aqueous Solution Using Bentonite and Activated Carbon
...Show More Authors

The adsorption of Pb(II) ions onto bentonite and activated carbon was investigated. The effects of pH, initial adsorbent dosage, contact time and temperature were studied in batch experiments. The maximum adsorption capacities for bentonite and activated carbon were 0.0364 and 0.015 mg/mg, respectively. Thermodynamic parameters such as Gibbs free energy change, Enthalpy change and Entropy change have been calculated. These thermodynamic parameters indicated that the adsorption process was thermodynamically spontaneous under natural conditions and the adsorption was endothermic in nature. Experimental data were also tested in terms of adsorption kinetics, the results showed that the adsorption processes followed well pseudo second- order

... Show More
View Publication Preview PDF
Publication Date
Mon Feb 28 2022
Journal Name
Sains Malaysiana
Green Synthesis of Nickle Oxide Nanoparticles for Adsorption of Dyes
...Show More Authors

The green synthesis of nickel oxide nanoparticles (NiO-NP) was investigated using Ni(NO3)2 as a precursor, olive tree leaves as a reducing agent, and D-sorbitol as a capping agent. The structural, optical, and morphology of the synthesized NiO-NP have been characterized using ultraviolet–visible spectroscopy (UV-Vis), X-ray crystallography (XRD) pattern, Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM) analysis. The SEM analysis showed that the nanoparticles have a spherical shape and highly crystalline as well as highly agglomerated and appear as cluster of nanoparticles with a size range of (30 to 65 nm). The Scherrer relation has been used to estimate the crystallite size of NiO-NP which ha

... Show More
View Publication
Scopus (28)
Crossref (21)
Scopus Clarivate Crossref
Publication Date
Fri May 31 2019
Journal Name
Journal Of Engineering
Decolorization, Biodegradation and Detoxification of Reactive Blue Azo Dye Using Immobilized Mixed Cells
...Show More Authors

Drastic threat to the natural system is caused by the uncontrolled release of synthetic pollutants, including azo dyes. This study centered on the decolorization and biodegradation of water soluble azo dye reactive blue (RB) in a batch mode sequential anaerobic-aerobic processes. A local sewage treatment plant was the source where activated sludge was collected to be used as non-adapted mixed culture with both free and the alginate immobilized cells for RB biodegradation. Under anaerobic conditions, the free and immobilized mixed cells were proved to completely decolorize 10 mg/ L of RB within 20 and 30 h, respectively. Alginate- immobilized mixed cells, resulted in 88%, 87%, and 87% maximum COD removals with samples con

... Show More
View Publication Preview PDF
Crossref (14)
Crossref
Publication Date
Wed Jan 18 2012
Journal Name
Journal Of Engineering
Physical Adsorption, Chemical Adsorption, Surface Area, Pore Size distribution, HDS catalyst
...Show More Authors

Physical and chemical adsorption analyses were carried out by nitrogen gas using ASTM apparatus at 77 K and hydrogen gas using volumetric apparatus at room temperature respectively. These analyses were used for determination the effect of coke deposition and poisoning metal on surface area, pore size distribution and metal surface area of fresh and spent hydrodesulphurization catalyst Co-MoAl2O3 .Samples of catalyst (fresh and spent) used in this study are taken from AL-Dura refinery. The results of physical adsorption shows that surface area of spent catalyst reduced to third compare with fresh catalyst and these catalysts exhibit behavior of type four according to BET classification ,so, the pores of these samples are cylindrical, and the

... Show More
Preview PDF
Publication Date
Thu Jun 30 2011
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
CRACKING ACTIVITY OF PREPARED Y-ZEOLITE CATALYST USING CUMENE ON FLUIDIZED BED REACTOR
...Show More Authors

The catalytic activity of faujasite type NaY catalysts prepared from local clay (kaolin) with different Si/Al ratio was studied using cumene cracking as a model for catalytic cracking process in the temperature range of 450-525° C, weight hourly space velocity (WHSV) of 5-20 h1, particle size ≤75μm and atmospheric pressure. The catalytic activity was investigated using experimental laboratory plant scale of fluidized bed reactor.
It was found that the cumene conversion increases with increasing temperature and decreasing WHSV. At 525° C and WHSV 5 h-1, the conversion was 42.36 and 35.43 mol% for catalyst with 3.54 Si/Al ratio and Catalyst with 5.75 Si/Al ratio, respectively, while at 450° C and at the same WHSV, the conversion w

... Show More
View Publication Preview PDF
Publication Date
Mon Mar 23 2020
Journal Name
Journal Of Engineering
Utilization of Glycerol for Glycerol Carbonate Synthesis via Transesterfication Reaction over Bio-Char Catalyst prepared from reed plant
...Show More Authors

Biodiesel production process was attracted more attention recently due to the surplus quantity of glycerol (G) as a byproduct from the process. Glycerol Utilization must take in to consideration to fix this issue also, to ensure biodiesel industry sustainability. Highly amount of Glycerol converted to more benefit material Glycerol carbonate (GC) was one of the most allurement compound derived from glycerol by transesterification of glycerol with dimethyl carbonate (DMC). Various parameters have highly impact on transesterification was investigated like catalyst loading (1-5) %wt., molar ratio of DMC: glycerol (5:1 – 1:1), reaction time (30 - 150) min and temperature (40 – 80) ᴼC. The Optimum glycerol carbonate yie

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jul 01 2015
Journal Name
Advanced Powder Technology
Characterization of nano-silica prepared from local silica sand and its application in cement mortar using optimization technique
...Show More Authors

View Publication
Scopus (87)
Crossref (88)
Scopus Clarivate Crossref
Publication Date
Fri Jul 01 2022
Journal Name
Sustainable Materials And Technologies
Green approach for fabrication of graphene from polyethylene terephthalate (PET) bottle waste as reactive material for dyes removal from aqueous solution: Batch and continuous study
...Show More Authors

Scopus (39)
Crossref (9)
Scopus Clarivate Crossref