The prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices’ power usage. Also, a rand order code (ROC) technique is used with SNN to detect cyber-attacks. The proposed method is evaluated by comparing its performance with two other methods: IDS-DNN and IDS-SNNTLF by using three performance metrics: detection accuracy, latency, and energy usage. The simulation results have shown that IDS-SNNDT attained low power usage and less latency in comparison with IDS-DNN and IDS-SNNTLF methods. Also, IDS-SNNDT has achieved high detection accuracy for cyber-attacks in contrast with IDS-SNNTLF.
In this research Bi2S3 thin films have been prepared on glass substrates using chemical spray pyrolysis method at substrate temperature (300oC) and molarity (0.015) mol. Structural and optical properties of the thin films above have been studied; XRD analysis demonstrated that the Bi2S3 films are polycrystalline with (031) orientation and with Orthorhombic structure. The optical properties were studied using the spectral of the absorbance and transmission of films in wavelength ranging (300-1100) nm. The study showed that the films have high transmission within the range of the visible spectrum. Also absorption coefficient, extinction coefficient and the optical energy gap (Eg) was calculated, found that the film have direct ener
... Show MoreIn this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification system and a classical classification method (k-nearest neighbors, kNN) is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier) is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesi
... Show MoreIn this paper we proposes the philosophy of the Darwinian selection as synthesis method called Genetic algorithm ( GA ), and include new merit function with simple form then its uses in other works for designing one of the kinds of multilayer optical filters called high reflection mirror. Here we intend to investigate solutions for many practical problems. This work appears designed high reflection mirror that have good performance with reduction the number of layers, which can enable one to controlling the errors effect of the thickness layers on the final product, where in this work we can yield such a solution in a very shorter time by controlling the length of the chromosome and optimal genetic operators . Res
... Show MoreThe purpose of this study was to determine the influence of environmental pH on production of biofilms and virulence genes expression in Pseudomonas aeruginosa.
Among 303 clinical and environmental samples 109 (61 + 48) isolates were identified as clinical and environmental P. aeruginosa isolates, respectively. Clinical samples were obtained from patients in the Al-Yarmouk hospital in Baghdad city, Iraq. Waste water from Al-Yarmouk hospital was used from site before treatment unit to collect environmental samples. The ability of prod
The deterioration of buried sewers during their lifetime can be affected by several factors leading to bad performance and can damage the infrastructure similar to other engineering structures. The Hydraulic deterioration of the buried sewers caused by sewer blockages while the structural deterioration caused by sewer collapses due to sewer specifications and the surrounding soil characteristics and the groundwater level. The main objective of this research is to develop deterioration models, which are used to predict changes in sewer condition that can provide assessment tools for determining the serviceability of sewer networks in Baghdad city. Two deterioration models were developed and tested using statistical software SPSS, the
... Show MoreManganese-zinc ferrite MnxZn1-xFe2O4 (MnZnF) powder was prepared using the sol-gel method. The morphological, structural, and magnetic properties of MnZnF powder were studied using X-ray diffraction (XRD), atomic force microscopy (AFM), energy dispersive X-ray (EDX), field emission-scanning electron microscopes (FE-SEM), and vibrating sample magnetometers (VSM). The XRD results showed that the MnxZn1-xFe2O4 that was formed had a trigonal crystalline structure. AFM results showed that the average diameter of Manganese-Zinc Ferrite is 55.35 nm, indicating that the sample has a nanostructure dimension. The EDX spectrum revealed the presence of transition metals (Mn, Fe, Zn, and O) in Mang
... Show More