Many stone tools were found on a hill south of the Hor Al-Dalmaj which is located in the central part of the alluvial plain of Mesopotamia, between the Tigris and Euphrates Rivers. The types of rocks from which the studied stone tools were made are not found in the alluvial plain, because it consists of friable sand, silt, and clay. All existing sediments were precipitated in riverine environments such as point bar, over bank, and floodplain sediments. The collected stone tools were described with a magnifying glass (10 x) and a polarized microscope after they were thin sectioned. Microscopic analysis showed that these stone tools are made of sedimentary, volcanic igneous and metamorphic rocks, such as: sandstones, limestones, chert, conglomerate, rhyolite, basalt, mica schist, and quartzite.
The current studied stone tools were used by ancient humans as pestles, querns, scrapers, and knives. The present study showed that these tools were transported from outside the alluvial plain of Mesopotamia. A stone tool at the archaeological site of Al-Dalmaj indicates that there were some trade routes that connected this site with its surrounding; in addition to the economic, and that might occurred cultural exchanges during the Neolithic Period.
In this study, a 3 mm thickness 7075-T6 aluminium alloy sheet was used in the friction stir welding process. Using the design of experiment to reduce the number of experiments and to obtain the optimum friction stir welding parameters by utilizing Taguchi technique based on the ultimate tensile test results. Orthogonal array of L9 (33) was used based on three numbers of the parameters and three levels for each parameter, where shoulder-workpiece interference depth (0.20, 0.25, and 0.3) mm, pin geometry (cylindrical thread flat end, cylindrical thread with 3 flat round end, cylindrical thread round end), and thread pitch (0.8, 1, and 1.2) mm) this technique executed by Minitab 17 software. The results showed th
... Show MoreA particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.
Many isolated rural communities are located in regions where there is an abundant and reliable supply of solar energy, but where the distance to the nearest power station is many tens or even hundreds of kilometre. It is therefore mainly in these areas that rural electrification is now being provided by PV generators. since Stand-Alone PV generator can offer the most cost-effective and reliable option for providing power needed in remote places. Accordingly these isolated rural canters are fitted with PV for lighting, a refrigerator, a television and socket to supply kitchen appliances
The present paper addresses cultivation of Chlorella vulgaris microalgae using airlift photobioreactor that sparged with 5% CO 2 /air. The experimental data were compared with that obtained from bioreactor aerated with air and unsparged bioreactor. The results showed that the concentration of biomass is 0.36 g l -1 in sparged bioreactor with CO2/air, while, the concentration of biomass reached to 0.069 g l -1 in the unsparged bioreactor. They showed also that aerated ioreactor.with CO2/air gives more biomass production even the bioreactor was aerated with air. This study proved that application of sparging system for ultivation of Chlorella vulgaris microalgae using either CO2/air mixture or air has a significant
... Show MoreThe effective insulation design of the stress grading (SG) system in form-wound stator coils is essential for preventing partial discharges and excessive heat generation under pulse-width modulation excitation. This paper proposes a method to find the optimal insulation design of the SG system aimed at reducing the dielectric and thermal stresses in the machine coil. The non-uniform transmission line model is used to predict the voltage propagation along the overhang, SG, and slot regions considering the variation in the physical properties of the insulation layers. The machine coil parameters for different insulation materials are calculated by using the finite element method. Two optimization algorithms, fmincon and particle swarm optimiz
... Show MoreHypertension is identified as one of the most significant risk factors for cardiovascular diseases (CVDs). There is growing evidence showing that oxidative stress plays a major role in hypertension. Increased production of reactive oxygen species and decrease bioavailability of antioxidant have been demonstrated in experimental and human hypertension. The present study was directed to determine the beneficial effect of the antioxidant vitamin C in patients with essential hypertension treated with the calcium channel blocker (amlodipine) or with the angiotensin converting enzyme inhibitor (enalapril). Ninety six patients (50 females and 46 males) with essential hyp
... Show MoreCoronary heart disease (CHD) is the leading cause of death in United State (U.S.). Controlling of modifiable risk factors such as smoking, hypertension (HT), diabetes mellitus (D.M.), dyslipidemia, physical inactivity & obesity will prevent other serious cardiovascular complications
Gas-lift technique plays an important role in sustaining oil production, especially from a mature field when the reservoirs’ natural energy becomes insufficient. However, optimally allocation of the gas injection rate in a large field through its gas-lift network system towards maximization of oil production rate is a challenging task. The conventional gas-lift optimization problems may become inefficient and incapable of modelling the gas-lift optimization in a large network system with problems associated with multi-objective, multi-constrained, and limited gas injection rate. The key objective of this study is to assess the feasibility of utilizing the Genetic Algorithm (GA) technique to optimize t
In the present work, the efficiency of Tri-octyl Methyl Ammonium Chloride (TOMAC) ionic liquid was investigated as new and green demulsifier for three types of Iraqi crude oil emulsions (Nafut Khana (NK), Kirkuk and Basrah). The separation efficiency was studied at room temperature and by using microwave heating technique. Several batch experiments were done to specify the suitable conditions for the emulsification and demulsification which were specified as 45 minutes and 3000 rpm for crude oil emulsification while the ionic liquid doses were (500,300,150,50) ppm and the conditions of microwave heating were 1000 watt and 50 second as irradiation time. The results were very encouraging especially for NK and Kirkuk crude oil emulsions whe
... Show More