Littoral and benthic invertebrates from Roundwood Reservoir System were sampled. Oligochaetes and molluscs were the dominant organisms in the littoral and benthic areas Trichopterans and chironomids were the most abundant insect groups. Scuba diving samples reinforced that view. Other groups of macroinvertebrates were poorly represented. Vertical and horizontal hauls of zooplankton revealed that there were twelve species of zooplankton present. Daphnia hyalina Leydig and Bosmina coregoni Baird were the two dominant species.
In recent years, there has been a very rapid development in the field of clean energy due to the huge increase in the demand, which prompted the manufacturers and the designers to increase the efficiency and operating life of the energy systems and especially for wind turbine. It can be considered that the control unit is the main key of the wind turbines. Consequently, it’s essential to understanding the working principle of this unit and spotlight on the factors which influence significantly on the performance of wind turbine system. Simulink technique is proposed to find the response of the wind turbine system under different working conditions. In this paper, it was investigated
A fluorescence microscopy considered as a powerful imaging tool in biology and medicine. In addition to useful signal obtained from fluorescence microscopy, there are some defects in its images such as random variation in brightness, noise that caused by photon detection and some background pixels in the acquired fluorescence microscopic images appear wrongly auto-fluorescence property. All these practical limitations have a negative impact on the correct vision and analysis of the fluorescent microscope users. Our research enters the field of automation of image processing and image analysis using image processing techniques and applying this processing and analysis on one of the very important experiments in biology science. This research
... Show MoreThe mechanism of the electronic flow rate at Al-TiO2 interfaces system has been studied using the postulate of electronic quantum theory. The different structural of two materials lead to suggestion the continuum energy level for Al metal and TiO2 semiconductor. The electronic flow rate at the Al-TiO2 complex has affected by transition energy, coupling strength and contact at the interface of two materials. The flow charge rate at Al-TiO2 is increased by increasing coupling strength and decreasing transition energy.
In this article, a numerical method integrated with statistical data simulation technique is introduced to solve a nonlinear system of ordinary differential equations with multiple random variable coefficients. The utilization of Monte Carlo simulation with central divided difference formula of finite difference (FD) method is repeated n times to simulate values of the variable coefficients as random sampling instead being limited as real values with respect to time. The mean of the n final solutions via this integrated technique, named in short as mean Monte Carlo finite difference (MMCFD) method, represents the final solution of the system. This method is proposed for the first time to calculate the numerical solution obtained fo
... Show MoreThis study aimed to incorporate hydroxyapatite nanoparticles (nHA) or amorphous calcium phosphate nanoparticles (nACP) into a self-etch primer (SEP) to develop a simplified orthodontic bonding system with remineralizing and enamel preserving properties.
nHA and nACP were incorporated into a commercial SEP (Transbond™ plus) in 7% weight ratio and compared with the plain SEP as a control. Shear bond strengths (SBS), enamel damage, and adhesive remnant index (ARI) scores were evaluated at 24 h
In this research is estimated the function of reliability dynamic of multi state systems and their compounds and for three types of systems (serial, parallel, 2-out-of-3) and about two states (Failure and repair) depending on calculating the structur function allow to describing the behavior of
sensor sampling rate (SSR) may be an effective and crucial field in networked control systems. Changing sensor sampling period after designing the networked control system is a critical matter for the stability of the system. In this article, a wireless networked control system with multi-rate sensor sampling is proposed to control the temperature of a multi-zone greenhouse. Here, a behavior based Mamdany fuzzy system is used in three approaches, first is to design the fuzzy temperature controller, second is to design a fuzzy gain selector and third is to design a fuzzy error handler. The main approach of the control system design is to control the input gain of the fuzzy temperature controller depending on the cur
... Show MoreIn this paper, a description of a design for new DES block cipher, namely DES64X and DES128X. The goals of this design, a part of its security level, are large implementation flexibility on various operating systems as well as high performances. The high level structure is based on the principle of DES and Feistel schema, and proposes the design of an efficient key-schedule algorithm which will output pseudorandomsequences of subkeys. The main goal is to reach the highest possible flexibility, in terms of round numbers, key size, and block size. A comparison of the proposed systems on 32-bit, 64-bit operating system, using 32-bit and 64-bit Java Virtual Machine (JVM), showed that the latter has much better performance than the former.
... Show MoreIn this work, optical system with different aperture shapes (circular, square, elliptical and triangle aperture) has been used for efficiency evaluation when the system involved moving factor in ideal case (aberration free). The optical system evaluate far moving object, therefore the image forming at image plane due to point spread function (image formula of incoherently illuminated point object). A mathematical treatment has been used to getting results by Gaussian numerical calculations method. The results show priority of circular aperture when optical system that submits of moving factor.
A low-cost reverse flow plasma system powered by argon gas pumping was built using homemade materials in this paper. The length of the resulting arc change was directly proportional to the flow rate, while using the thermal camera to examine the thermal intensity distribution and demonstrating that it is concentrated in the centre, away from the walls at various flow rates, the resulting arc's spectra were also measured. The results show that as the gas flow rate increased, so did the ambient temperature. The results show that the medium containing the arc has a maximum temperature of 34.1 ˚C at a flow rate of 14 L/min and a minimum temperature of 22.6 ˚C at a flow rate of 6 L/min.