Keys for 22 species representing 10 genera of Thripidae were provided collection of
samples carried out during 1999-2001 in different localities in the middle of Iraq. Of them
four species are described as new to science, Frankliniella megacephala sp. nov; Retithrips
bagdadensis sp. nov; Chirothrips imperatus sp. nov; Taeniothrips tigridis sp. nov; Another
fourteen species are recorded for the first time in Iraq; Thrips meridionalis (Pri.);
Microcephalothrips abdominils (Crawford Scolothrips sexmaculatus (Pergande),);Scolothrips
pallidus (Beach); Scritothrips mangiferae Pri.; Frankliniella tritici Bagnall; Frankliniella
schultzie Trybom; Frankliniella unicolor Morgan; Retithrips aegypticus Marchal; Retithrips
javanicus Mayet; Taeniothrips gowdeyi (Bagnall); Chirothrips meridionalis Bagnall;
Chirothrips mexicanus Crawford; Chirothrips hamatus Trybom; and four species reported
previously for Iraq; Thrips tabaci Lindeman; Retithrips syriacus Mayet; Parascolothrips
priesneri Mound; Anaphothrips sudanensis Trybom; on different plants.
In this paper, we investigate the impact of fear on a food chain mathematical model with prey refuge and harvesting. The prey species reproduces by to the law of logistic growth. The model is adapted from version of the Holling type-II prey-first predator and Lotka-Volterra for first predator-second predator model. The conditions, have been examined that assurance the existence of equilibrium points. Uniqueness and boundedness of the solution of the system have been achieve. The local and global dynamical behaviors are discussed and analyzed. In the end, numerical simulations are confirmed the theoretical results that obtained and to display the effectiveness of varying each parameter
Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for
في السنوات الأخيرة، أدى التقدم التكنولوجي في إنترنت الأشياء (IoT) وأجهزة الاستشعار الذكية إلى فتح اتجاهات جديدة وإعطاء حلول عملية في مختلف قطاعات الحياة. يتم التعرف على إنترنت الأشياء كتنولوجيا حديثة تربط بين مختلف انواع الشبكات. تم تحسين أنواع مختلفة من قطاعات الرعاية الصحية في المجال الطبي بناءً على هذه التكنولوجيا. أحد هذه القطاعات الهامة هو نظام مراقبة الصحة (HMS). تعتبر مراقبة المريض عن بعد لاسلكيًا وبت
... Show MoreBackground: Ultrasonography has been used to examine the thickness of the lower uterine segment in women with previous cesarean sections in an attempt to predict the risk of scar dehiscence during subsequent pregnancy. The predictive value of such measurement has not been adequately assessed. Objectives: To correlate lower uterine segment thickness measured by trans abdominal ultrasound in pregnant women with previous cesarean section with that measured during cesarean section by caliper and to find out minimum lower uterine segment thickness indicative of integrity of the scar.Methods: A prospective observational study at Elwyia Maternity Teaching Hospital, from January 2011 to January 2012. A total of 143 women were enrolled in the stu
... Show More