Liquid electrodes of domperidone maleate (DOMP) imprinted polymer were synthesis based on precipitation polymerization mechanism. The molecularly imprinted (MIP) and non-imprinted (NIP) polymers were synthesized using DOMP as a template. By methyl methacrylate (MMA) as monomer, N,Nmethylenebisacrylamide (NMAA) and ethylene glycol dimethacrylate (EGDMA) as cross-linkers and benzoyl peroxide (BP) as an initiator. The molecularly imprinted membranes were synthesis using acetophenone (APH), di-butyl sabacate (DBS), Di octylphthalate (DOPH) and triolyl phosphate (TP)as plasticizers in PVC matrix. The slopes and limit of detection of liquid electrodes obtained from the calibration curves ranged from (-18.88– -29.01) mV/decade and (4.0 × 10-5 – 6.0 × 10-5) M, respectively and the response time was about 60 seconds. The Liquid electrodes were filled with (10-2 M) standard solution of the drug and observed stable response for a pH ranged from 2.0 to 11.0 and with good selectivity for over several species. The fresh electrodes of synthesis were effectively used in the pharmaceutical sample to determine DOMP without any time consuming pretreatment measures.
The Schiff base (E)-2-(((2-(1H-benzo[d]imidazol-2-yl) phenyl) imino) methyl)-4-methylphenol (Lb) ligand with some metals(II) ion such as; Co, Cu, Cd, and Hg, were synthesis and characterized by the mass and 1 HNMR spectrometry for ligand Schiff base, the fourier-transform infrared spectroscop (FTIR), UV- visible and the flame atomic absorption (AA) spectrum, the CHN analysis, and the chlorine content, in addition to measuring the magnetic sensitivity of the complexes. All the complexes had octahedral geometry. The bioactivity activity for compounds against; Rhizopodium, Staphylococcus aureus, and Escherichia coli showed different efficacy towards these microorganisms
New schiff bases series (VIII) a-e and 1,3-thiazolidin-4-one derivatives (IX) a-e containing the 1,2,4-triazole and 1,3,4-thiazazole rings were synthesized and screening their biological activities. These compounds were identified via Fourier transform infrared (FT-IR) spectra, some via Proton nuclear magnetic resonance (1H-NMR) and mass spectra. The biological results indicated that all of these compounds did not reveal antibacterial effectiveness against (Escherichia coli and Klebsiella species) (G-). Some of these compounds showed moderate antibacterial activity against (Staphylococcus aureus, and Staphylococcus epidermidis) (G+), and all compounds exhibited moderate activity against Candida albicans.
The present study deals with the synthesis of four different azo-azomethine derivatives; this is done by two steps; the first step is diazotization of sulfonamides (sulfanilamide, sulfacetamide, sulfamethoxazole, and sulfadiazine) separately, followed by the second step; the coupling reaction of diazotized compounds with isatin bis-Schiff base named 3-((4-nitrobenzylidene) hydrazono)indolin-2-one. The later one (bis-Schiff base) was synthesized by the reaction of 3-hydrazono-indolin-2-one with p-nitrobenzaldehyde. The chemical structures of newly synthesized compounds were approved on the basis of their FTIR, 1H-NMR, and CHNS elemental analysis data results. The synthesized azo compounds were tested in vitro for their antimicrobial potentia
... Show MoreThe organic compound imidazole has the chemical formula C3N2H4. Numerous significant biological compounds contain imidazole. The amino acid histidine is the most prevalent. The substituted imidazole derivatives have great potential for treating a variety of systemic fungi infections. Thiourea is an organosulfur compound with the formula SC(NH2)2. It is a reagent in organic synthesis. In this paper, some new imidazole and thiourea derivatives are synthesized, characterized, and studied for their biological activity. These new compounds were synthesized from the starting material terephthalic acid, which was transformed to corresponding ester [I] by the refluxing of diacid with methanol in the presence of H2SO4 as a catalyst, compound [I] con
... Show More1,3,4-oxadizole and pyrazole derivatives are very important scaffolds for medicinal chemistry. A literature survey revealed that they possess a wide spectrum of biological activities including anti-inflammatory and antitumor effects.
To describe the synthesis and evaluation of two classes of new niflumic acid (NF) derivatives, the 1,3,4-oxadizole derivatives (compounds 3 and (4A-E) and pyrazole derivatives (compounds 5 and 6), as EGFR tyrosine kinase inhibitors in silico and in vitro.
The designed compounds were synthesized using convent
Objective: This study involved the synthesis of new Schiff bases and 1,3-oxazepine derivatives from the baclofen drug and study the anticancer activities. Methods: Baclofen was initially reacted with aromatic aldehydes to create Schiff base derivatives (Ia–Ib), which were then closed in the next step using anhydrous acids to form oxazepine derivatives (IIa–IId). Results: The title compounds were synthesized successfully and identified using FT-IR, 1H NMR, and 13C NMR spectroscopy. Additionally, compound (IIc)’s (3-(4-chloro-phenyl)-4-[2-(4nitro-phenyl)-4,7-dioxo-4,7-dihydro-[1,3] oxazepin-3-yl]butyric acid) anticancer activity was assessed using MTT assay against FTC-133 (thyroid cancer) compared with WRL-68 (normal cell line). Discus
... Show MoreMefenamic acid (MA) is one of the non-steroidal anti-inflammatory drugs, it is widely used probably due to having both anti-inflammatory and analgesic activity, the main side effects of mefenamic acid include gastrointestinal tract (GIT) disturbance mainly diarrhea, peptic ulceration, and gastric bleeding. The analgesic effects of NSAIDs are probably linked to COX-2 inhibition, while COX-1 inhibition is the major cause of this classic adverse effects. Introduction of thiazolidinone may lead to the increase in the bulkiness leads to the preferential inhibition of COX-2 rather than COX-1 enzyme. The study aimed to synthesize derivatives of mefenamic acid with more potency and to decrease the drug's potential side effects, new series of 4-t
... Show More