The emergence of COVID-19 has resulted in an unprecedented escalation in different aspects of human activities, including medical education. Students and educators across academic institutions have confronted various challenges in following the guidelines of protection against the disease on one hand and accomplishing learning curricula on the other hand. In this short view, we presented our experience in implementing e-learning to the undergraduate nursing students during the present COVID-19 pandemic emphasizing the learning content, barriers, and feedback of students and educators. We hope that this view will trigger the preparedness of nursing faculties in Iraq to deal with this new modality of learning and improve it should the COVID-19 pandemic keep on or a new pandemic emerges.
Background: Insufficient sleep due to excessive media use is linked to decrease physical activity, poor nutrition, obesity, and decreased overall health-related quality of life.
Objectives: To assess the effect of using the internet and social media on the sleep of 4th-stage secondary school students.
Subjects and Methods: Cross-sectional study with the analytic element; for 500 secondary school students, obtained by choosing two schools randomly from each of the six educational directorates, by using a structured questionnaire.
Result: Secondary scho
... Show MoreBecause of their Physico‐chemical characteristics and its composition, the development of new specific analytical methodologies to determine some highly polar pesticides are required. The reported methods demand long analysis time, expensive instruments and prior extraction of pesticide for detection. The current work presents a new flow injection analysis method combined with indirect photometric detection for the determination of Fosetyl‐Aluminum (Fosetyl‐Al) in commercial formulations, with rapid and highly accurate determination involving only construction of manifold system combined with photometric detector without need some of the pre‐treatments to the sample before the analysis such a
Abstract:
Viral marketing has become one of the modern strategies adopted by organizations in the marketing of products and services. The idea of viral marketing focuses on the social relations between individuals and groups. As a result of the technological development, most organizations have resorted to using the Internet and its applications and social media to market and promote their products. To reach the largest number of consumers to display their products and services in many ways, including text, audio, visual or video and thus affect the behavior of the consumer.
The problem of the study was the following question (do viral marketing technologies have an impact on consumer behavior?)
... Show MoreBotnet detection develops a challenging problem in numerous fields such as order, cybersecurity, law, finance, healthcare, and so on. The botnet signifies the group of co-operated Internet connected devices controlled by cyber criminals for starting co-ordinated attacks and applying various malicious events. While the botnet is seamlessly dynamic with developing counter-measures projected by both network and host-based detection techniques, the convention techniques are failed to attain sufficient safety to botnet threats. Thus, machine learning approaches are established for detecting and classifying botnets for cybersecurity. This article presents a novel dragonfly algorithm with multi-class support vector machines enabled botnet
... Show MoreThe present theoretical study analyzes the legacy of the Chicago School of Urban Sociology and evaluates it in the light of the growth and development of Chicago City and the establishment of sociology in it. Sociology has become an academic discipline recognized in the United States of America in the late nineteenth century, particularly, after the establishment of the first department of sociology in the University of Chicago in 1892. That was during the period of the rapid industrialization and sustainable growth of the Chicago City. The Chicago School relied on Chicago City in particular, as one of the American cities that grew and expanded rapidly in the first two decades of the twentieth century. At the end of the nineteenth centur
... Show MoreDeep Learning Techniques For Skull Stripping of Brain MR Images
One of the diseases on a global scale that causes the main reasons of death is lung cancer. It is considered one of the most lethal diseases in life. Early detection and diagnosis are essential for lung cancer and will provide effective therapy and achieve better outcomes for patients; in recent years, algorithms of Deep Learning have demonstrated crucial promise for their use in medical imaging analysis, especially in lung cancer identification. This paper includes a comparison between a number of different Deep Learning techniques-based models using Computed Tomograph image datasets with traditional Convolution Neural Networks and SequeezeNet models using X-ray data for the automated diagnosis of lung cancer. Although the simple details p
... Show MoreIn this paper, a compact genetic algorithm (CGA) is enhanced by integrating its selection strategy with a steepest descent algorithm (SDA) as a local search method to give I-CGA-SDA. This system is an attempt to avoid the large CPU time and computational complexity of the standard genetic algorithm. Here, CGA dramatically reduces the number of bits required to store the population and has a faster convergence. Consequently, this integrated system is used to optimize the maximum likelihood function lnL(φ1, θ1) of the mixed model. Simulation results based on MSE were compared with those obtained from the SDA and showed that the hybrid genetic algorithm (HGA) and I-CGA-SDA can give a good estimator of (φ1, θ1) for the ARMA(1,1) model. Anot
... Show MoreTo expedite the learning process, a group of algorithms known as parallel machine learning algorithmscan be executed simultaneously on several computers or processors. As data grows in both size andcomplexity, and as businesses seek efficient ways to mine that data for insights, algorithms like thesewill become increasingly crucial. Data parallelism, model parallelism, and hybrid techniques are justsome of the methods described in this article for speeding up machine learning algorithms. We alsocover the benefits and threats associated with parallel machine learning, such as data splitting,communication, and scalability. We compare how well various methods perform on a variety ofmachine learning tasks and datasets, and we talk abo
... Show More