The emergence of COVID-19 has resulted in an unprecedented escalation in different aspects of human activities, including medical education. Students and educators across academic institutions have confronted various challenges in following the guidelines of protection against the disease on one hand and accomplishing learning curricula on the other hand. In this short view, we presented our experience in implementing e-learning to the undergraduate nursing students during the present COVID-19 pandemic emphasizing the learning content, barriers, and feedback of students and educators. We hope that this view will trigger the preparedness of nursing faculties in Iraq to deal with this new modality of learning and improve it should the COVID-19 pandemic keep on or a new pandemic emerges.
Since June 2020, an explosion in number of new COVID-19 patients has been reported in Iraq with a steady increment in new daily reported cases over the next 3 months. The limited number of PCR kits in the country and the increment in the number of new COVID-19 cases makes the role of CT scan examinations rising and becoming essential in aiding the health institutions in diagnosing and isolating infected patients and those in close contacts. This study will review the spectrum of CT pulmonary changes due to COVID-19 infection and estimate the CT severity score index and its relation to age, sex, and PCR test results
Abstract:
Witness the current business environment changes rapidly reflected on the performance of the facility wishing to stay , which is no longer style reaction enough to handle installations with their environment , and quickly began to lose its luster with the emergence of a message and the vision of contemporary business environment from a set of parts interacting with each other and the concept of behavioral includes all dimensions of performance, it is imperative to adopt a system installations influence variables and positive interaction through the development of strategic plans and the use of implementation and follow-up strategies to ensure the effectiveness of the method for meas
... Show MoreData scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for
COVID-19 is a pandemic disease that has a wide spectrum of symptoms from asymptomatic to severe fatal cases due to hyperactivation of the immune system and secretion of pro-inflammatory cytokines. This study aimed to assess the level and impact of interleukin (IL)-13, IL-33, and tumor necrosis factor (TNF)-α cytokines on immune responses in mild and moderate COVID-19-infected Iraqi patients. A prospective case-control study was conducted from January 2023 to January 2024; it included 80 patients infected with moderate COVID-19 infection who consulted in different private clinics and 40 healthy controls. The serum of both groups was tested for quantification of serum IL-13, IL-33, and TNF-α using the human enzyme-linked immunosorbe
... Show MoreBP algorithm is the most widely used supervised training algorithms for multi-layered feedforward neural net works. However, BP takes long time to converge and quite sensitive to the initial weights of a network. In this paper, a modified cuckoo search algorithm is used to get the optimal set of initial weights that will be used by BP algorithm. And changing the value of BP learning rate to improve the error convergence. The performance of the proposed hybrid algorithm is compared with the stan dard BP using simple data sets. The simulation result show that the proposed algorithm has improved the BP training in terms of quick convergence of the solution depending on the slope of the error graph.