Background: Silymarin is a polyphenolic flavonoid
derived from milk thistle (Silybum marianum) that has
anti-inflammatory, cytoprotective, anticarcinogenic
and antioxidant effects. It has been used medicinally
to treat liver disorders including acute and chronic
viral hepatitis, toxin/drug induced hepatitis, and
alcoholic liver disease.
Objective: To evaluate the antinociceptive effect of
silymarin in experimental animal model of pain.
Methods: The efficacy and dose response effect of
silymarin (125, 250, and 500mg/kg) were assessed
against control using tail flick test in mice as a model
of nociceptive pain. In this model, all doses of
silymarin were given intraperitoneally 15 min before
immersion of tail in hot water 50°C, and Tail Flick
Latency was measured before, and after (15, 30, 60
and 120 min) administration of silymarin.
Result: Silymarin in 250 and 500mg/kg
significantly increase Tail Flick Latency after 15, 30,
60 and 120 min in a dose dependent manner that the
maximum effect seen after 120 min compared to
baseline value.
Conclusion: Silymarin as a herbal drug produce a
significant antinociceptive effect in experimental
animal model of pain, and beside its better
standardization, quality control, and safety profile, in
addition to its availability and relative low cost,
represent a good alternative choice for management of
pain.
A computational investigation is carried out in the field of charged –particle optics with the aid of numerical analysis method using the personal computer. The work is concerned with the design of electron gun with space-charge effect. The Finite element method (FEM) used in the solution of Poison's equation for determine the axial potential distribution of the two-electrode immersion lens operated under zero magnification condition , and from the solution of the paraxial ray equation the optical properties such as the focal length , spherical and chromatic aberration coefficients are determined, also a calculation of the brightness and perveance for the lens. The electrodes geometry was determined in two and three dimensi
... Show MoreThis study was undertaken to diagnose routine settling problems within a third-party oil and gas companies’ Mono-Ethylene Glycol (MEG) regeneration system. Two primary issues were identified including; a) low particle size (<40 μm) resulting in poor settlement within high viscosity MEG solution and b) exposure to hydrocarbon condensate causing modification of particle surface properties through oil-wetting of the particle surface. Analysis of oil-wetted quartz and iron carbonate (FeCO₃) settlement behavior found a greater tendency to remain suspended in the solution and be removed in the rich MEG effluent stream or to strongly float and accumulate at the liquid-vapor interface in comparison to naturally water-wetted particles. As su
... Show MoreAl Huweizah Marsh is considered as the largest marsh at the southern part of Iraq. About one third of the marsh is located within the Iranian territory. Iran began to construct earth dikes along the Iraqi-Iranian international borders to separate the Iranian part of the marsh. The electrical conductivity, EC, value was adopted to be the indicator for the water salinity within the marsh. A steady two-dimensional water quality routing model was implemented by using the RMA2 and RMA4 softwares within the SMS computer package to estimate the distribution of the
EC values within the marsh seasonally during the wet, moderate and dry water years. The EC distribution Patterns were estimated considering the expected two cases of the marsh futu
In this research, the mechanism of cracks propagation for epoxy/ chopped carbon fibers composites have been investigated .Carbon fibers (5%, 10%, 15%, and 20%) by weight were used to reinforce epoxy resin. Bending test was carried out to evaluate the flexural strength in order to explain the mechanism of cracks propagation. It was found that, the flexural strength will increase with increasing the percentage weight for carbon fibers. At low stresses, the cracks will state at the lower surface for the specimen. Increasing the stresses will accelerate the speed of cracks until fracture accorded .The path of cracks is changed according to the distributions of carbon fibers
This work aim to prepare Ag/R6G/PMMA nanocomposite thin
films by In-situ plasma polymerization and study the changes in the
optical properties of fluorophore due to the presence of Ag
nanoparticles structures in the vicinity of the R6G laser dye. The
concentrations of R6G dye/MMA used are: 10-4M solutions were
prepared by dissolving the required quantity of the R6G dye in
MMAMonomer. Then Silver nanoparticles with 50 average particles
size were mixed with MMAmonomer with concentration of 0.3, 0.5,
0.7wt% to get R6G silver/MMA in liquid phase. The films were
deposited on glass substrates by dielectric barrier discharge plasma
jet. The Ag/R6G/PMMA nanocomposite thin films were
characterization by UV-Visible
In this work, the plasma parameters (electron temperature and
electron density) were determined by optical emission spectroscopy
(OES) produced by the RF magnetron Zn plasma produced by
oxygen and argon at different working pressure. The spectrum was
recorded by spectrometer supplied with CCD camera, computer and
NIST standard of neutral and ionic lines of Zn, argon and oxygen.
The effects of pressure on plasma parameters were studied and a
comparison between the two gasses was made.
In the present work, the focusing was on the study of the x-ray diffraction, dielectric constant, loses dielectric coefficient, tangent angle, alter- natively conductivity and morphology of PET/BaTio3. The PET/BaTio3 composite was prepared for polyethylene terephthalate PET polymer composite containing 0, 10, 20, 30, 40, 50, and 60 wt. % from Barium titanate BaTi03 powder. The composite of two materials leads to form mixing solution and hot-pressing method. The effect of BaTio3 on the structure and dielectric properties with morphology was studied on PET matrix polymer using XRD, LCR meter and SEM.
Non-thermal or cold plasma create many reactive species and charged particles when brought into contact with plant extracts. The major constituents involve reactive oxygen species, reactive nitrogen species and plasma ultra-violets. These species can be used to synthesize biologically important nanoparticles. The current study addressed the effect of the green method-based preparation approach on the volumetric analysis of Zn nanoparticles. Under different operating conditions, the traditional thermal method and the microwave method as well as the plasma generation in dielectric barrier discharge reactor were adopted as a preparation approach in this study. The results generally show that the type of method used plays an important role in d
... Show More