Background; Perforated duodenal ulcer (PDU) is a common surgical emergency that is associated with high mortality and morbidity. Early diagnosis and prompt surgical treatment is required to prevent grave complications.
Objective; The study was designed to evaluate the diagnostic accuracy of different radiological investigations in the diagnosis of perforated duodenal ulcer.
Methods; A prospective study of 185 pts with PDU at al kindy teaching hospital, Baghdad, Iraq from June 2008- august 2010. patients were examined clinically and investigated by blood test, chest x ray, plain X ray of the abdomen. Ultrasonography (U/S) and CT scanning done for those patients with negative X- ray finding. Resuscitation by intravenous fluid and antibiotic done. Explorative laparotomy done for all patients, repair of perforation done by simple omental patch. Data regarding radiological, ultrasonographic and CT finding and operative finding were recorded.
Results: The study of 185 pts with proven perforated DU revealed 162 (87.5%) male and 23 (12.5%) female with age ranging from 22-70 yrs ,the average was 38 years.
Crescentic shape air under diaphragm was seen in chest or abdominal plain X ray in 121 (65.4%) pts and negative in 64 (34.6%) pts. For those 64 pts, a positive finding of free air or fluid was seen by U/S in 16 (25%) pts and positive CT finding was seen in 62 (96.9%) pts.
The operative finding in those 64 pts were; a small perforation less than 0.5 cm in 24 pts, completely or partially sealed perforation in 19 pts, severe edema and narrowing of the pylorus in 15 pts and perforation larger than 1 cm but with little peritoneal soiling was seen in 6 pts.
Conclusions: Pneumoperitonium was detected radiologically in 65% of pts of perforated DU. CT scan was found to be superior to U/S study for the diagnosis in pts with negative X-ray finding. For pts with perforated DU Conservative treatmentcan be adopted in pts with negative radiological findings.
Reliability analysis methods are used to evaluate the safety of reinforced concrete structures by evaluating the limit state function 𝑔(𝑋𝑖). For implicit limit state function and nonlinear analysis , an advanced reliability analysis methods are needed. Monte Carlo simulation (MCS) can be used in this case however, as the number of input variables increases, the time required for MCS also increases, making it a time consuming method especially for complex problems with implicit performance functions. In such cases, MCS-based FORM (First Order Reliability Method) and Artificial Neural Network-based FORM (ANN FORM) have been proposed as alternatives. However, it is important to note that both MCS-FORM and ANN-FORM can also be time-con
... Show MoreIn this work, an important sugar alkynyl ether has been synthesized in two subsequent steps starting from commercially available D-galactose (3). This kind of compounds is highly significant in the synthesis of biologically active molecules such as 1,2,3-triazole and isoxazoles. In the first step, galactose (3) was reacted with acetone in the presence of anhydrous copper (II) sulfate to produce 1,2:3,4-di-O-isopropylidene-α-D-galactose (4) in good yield. The latter was reacted with excess of 3-bromoprop-1-yne in DMF in the presence of NaOH pellets to afford the target molecule 5 in a very good yield. The temperature of this step is crucial in determining the reaction yi
... Show MoreAbstract
A series of new 4(3H)-quinazolinone derivatives (S1-S4) were synthesized and characterized by FTIR,1HNMR and 13CNMR .Their cytotoxic activity against a set of human cancer cell lines MCF-7 (breast) and A549 (lung) was evaluated using MTT assay. To detect their selectivity toward cancer cells, the compounds were also tested against epithelial cells derived from normal human fibroblast (NHF). Methotrexate (MTX) was used as a reference for comparison . All the tested compounds exhibited toxicity against the normal cells lower than cancer cells. All the tested compounds displayed higher cytotoxicity against lung cancer cell line (A549) than MTX with the most
... Show MoreSolid‐waste management, particularly of aluminum (Al), is a challenge that is being confronted around the world. Therefore, it is valuable to explore methods that can minimize the exploitation of natural assets, such as recycling. In this study, using hazardous Al waste as the main electrodes in the electrocoagulation (EC) process for dye removal from wastewater was discussed. The EC process is considered to be one of the most efficient, promising, and cost‐effective ways of handling various toxic effluents. The effect of current density (10, 20, and 30 mA/cm2), electrolyte concentration (1 and 2 g/L), and initial concentration of Brilliant Blue dye (15 and 30 mg/L) on
Emulsion Liquid Membrane (ELM) is an emerging technology that removes contaminants from water and industrial wastewater. This study investigated the stability and extraction efficiency of ELM for the removal of Chlorpyrifos Pesticide (CP) from wastewater. The stability was studied in terms of emulsion breakage. The proposed ELM included n-hexane as a diluent, span-80 as a surfactant, and hydrochloric acid (HCl) as a stripping agent. Parameters such as mixing speed, aqueous feed solution pH, internal-to-organic membrane volume ratio, and external-to-emulsion volume ratio were investigated. A minimum emulsion breakage of 0.66% coupled with a maximum chlorpyrifos extraction and stripping efficiency were achieved at 96.1% and 95.7% at b
... Show MorePlatinum nanoparticles (PtNPs) exhibit promising biomedical properties, but concerns about biocompatibility and synthesis-related toxicity remain. This study aimed to develop eco-friendly PtNPs using aqueous broccoli extract as a natural reducing and stabilizing agent, and to assess their multifunctional biomedical potential. PtNPs were synthesized through sonochemical reduction of K₂PtCl₆ in broccoli extract, followed by purification and comprehensive physicochemical characterization. UV–Vis confirmed nanoparticle formation at 253 nm, while XRD and FTIR analyses verified the crystalline FCC structure and phytochemical capping. TEM revealed mainly spherical PtNPs with an average core size of 14.83 ± 7.67 nm. Conversely, DLS showe
... Show More