Preferred Language
Articles
/
jkmc-539
Psychological and Physical Correlates of Body Image Dissatisfaction among High School Egyptian Students
...Show More Authors

Background: Body image is one of the most important psychological factors that affects adolescents’ personality and behavior. Body image can be defined as the person’s perceptions, thoughts, and feelings about his or her body.

Objectives: to identify the prevalence of body image concerns among secondary school students and its relation to different factors.

Subjects and methods: A cross-sectional study conducted in which 796 secondary school students participated and body shape concerns was investigated using the body shape questionnaire (BSQ-34).

Results: The prevalence of moderate/marked concern was (21.6%). Moderate/ marked body shape concern was significantly associated with unemployed fathers and mothers, low level of maternal education, lower socioeconomic status, concern with body weight or problematic eating, increased BMI, increased anxiety and depression.

Conclusions: The high prevalence of moderate/marked dissatisfaction with body shape and its possible relation to subsequent hazards such as eating disorders, depression, and anxiety should be of concern.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Dec 08 2021
Journal Name
J. Inf. Hiding Multim. Signal Process.
Predication of Most Significant Features in Medical Image by Utilized CNN and Heatmap.
...Show More Authors

The growth of developments in machine learning, the image processing methods along with availability of the medical imaging data are taking a big increase in the utilization of machine learning strategies in the medical area. The utilization of neural networks, mainly, in recent days, the convolutional neural networks (CNN), have powerful descriptors for computer added diagnosis systems. Even so, there are several issues when work with medical images in which many of medical images possess a low-quality noise-to-signal (NSR) ratio compared to scenes obtained with a digital camera, that generally qualified a confusingly low spatial resolution and tends to make the contrast between different tissues of body are very low and it difficult to co

... Show More
View Publication Preview PDF
Scopus (3)
Scopus
Publication Date
Fri Feb 08 2019
Journal Name
Journal Of The College Of Education For Women
COMPARATIVE STUDY FOR EDGE DETECTION OF NOISY IMAGE USING SOBEL AND LAPLACE OPERATORS
...Show More Authors

Many approaches of different complexity already exist to edge detection in
color images. Nevertheless, the question remains of how different are the results
when employing computational costly techniques instead of simple ones. This
paper presents a comparative study on two approaches to color edge detection to
reduce noise in image. The approaches are based on the Sobel operator and the
Laplace operator. Furthermore, an efficient algorithm for implementing the two
operators is presented. The operators have been applied to real images. The results
are presented in this paper. It is shown that the quality of the results increases by
using second derivative operator (Laplace operator). And noise reduced in a good

... Show More
View Publication Preview PDF
Publication Date
Sat Jun 06 2020
Journal Name
Journal Of The College Of Education For Women
Image classification with Deep Convolutional Neural Network Using Tensorflow and Transfer of Learning
...Show More Authors

The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Jun 15 2020
Journal Name
Al-academy
Aesthetics of the Sufi Image and its Representations in Post-Modern Theater Show
...Show More Authors

View Publication
Crossref
Publication Date
Wed Apr 10 2019
Journal Name
Engineering, Technology & Applied Science Research
Content Based Image Clustering Technique Using Statistical Features and Genetic Algorithm
...Show More Authors

Text based-image clustering (TBIC) is an insufficient approach for clustering related web images. It is a challenging task to abstract the visual features of images with the support of textual information in a database. In content-based image clustering (CBIC), image data are clustered on the foundation of specific features like texture, colors, boundaries, shapes. In this paper, an effective CBIC) technique is presented, which uses texture and statistical features of the images. The statistical features or moments of colors (mean, skewness, standard deviation, kurtosis, and variance) are extracted from the images. These features are collected in a one dimension array, and then genetic algorithm (GA) is applied for image clustering.

... Show More
View Publication
Scopus (9)
Crossref (5)
Scopus Crossref
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Multiwavelet and Estimation by Interpolation Analysis Based Hybrid Color Image Compression
...Show More Authors

Nowadays, still images are used everywhere in the digital world. The shortages of storage capacity and transmission bandwidth make efficient compression solutions essential. A revolutionary mathematics tool, wavelet transform, has already shown its power in image processing. The major topic of this paper, is improve the compresses of still images by Multiwavelet based on estimation the high Multiwavelet coefficients in high frequencies sub band  by interpolation instead of sending all Multiwavelet coefficients. When comparing the proposed approach with other compression methods Good result obtained

View Publication Preview PDF
Publication Date
Mon Feb 07 2022
Journal Name
Cogent Engineering
A partial image encryption scheme based on DWT and texture segmentation
...Show More Authors

View Publication
Scopus (6)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Wed Dec 13 2023
Journal Name
2023 3rd International Conference On Intelligent Cybernetics Technology & Applications (icicyta)
GPT-4 versus Bard and Bing: LLMs for Fake Image Detection
...Show More Authors

The recent emergence of sophisticated Large Language Models (LLMs) such as GPT-4, Bard, and Bing has revolutionized the domain of scientific inquiry, particularly in the realm of large pre-trained vision-language models. This pivotal transformation is driving new frontiers in various fields, including image processing and digital media verification. In the heart of this evolution, our research focuses on the rapidly growing area of image authenticity verification, a field gaining immense relevance in the digital era. The study is specifically geared towards addressing the emerging challenge of distinguishing between authentic images and deep fakes – a task that has become critically important in a world increasingly reliant on digital med

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (3)
Scopus Crossref
Publication Date
Wed Feb 29 2012
Journal Name
Al-khwarizmi Engineering Journal
Color Image Denoising Using Stationary Wavelet Transform and Adaptive Wiener Filter
...Show More Authors

The denoising of a natural image corrupted by Gaussian noise is a problem in signal or image processing.  Much work has been done in the field of wavelet thresholding but most of it was focused on statistical modeling of wavelet coefficients and the optimal choice of thresholds.  This paper describes a new method for the suppression of noise in image by fusing the stationary wavelet denoising technique with adaptive wiener filter. The wiener filter is applied to the reconstructed image for the approximation coefficients only, while the thresholding technique is applied to the details coefficients of the transform, then get the final denoised image is obtained by combining the two results. The proposed method was applied by usin

... Show More
View Publication Preview PDF
Publication Date
Sat Apr 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
Image encryption algorithm based on the density and 6D logistic map
...Show More Authors

One of the most difficult issues in the history of communication technology is the transmission of secure images. On the internet, photos are used and shared by millions of individuals for both private and business reasons. Utilizing encryption methods to change the original image into an unintelligible or scrambled version is one way to achieve safe image transfer over the network. Cryptographic approaches based on chaotic logistic theory provide several new and promising options for developing secure Image encryption methods. The main aim of this paper is to build a secure system for encrypting gray and color images. The proposed system consists of two stages, the first stage is the encryption process, in which the keys are genera

... Show More
View Publication
Scopus (23)
Crossref (12)
Scopus Crossref