Background: Since the invention of laser in 1960, lasers have been developed and approved in many fields. Lasers can now be regarded as practical tools with unique properties that have been utilized effectively in several applications in fields of medical and biological sciences.Objectives: The aim of the current study was to preparation of vaccines (live attenuated and killed) by irradiation of the bacteria by the low level diode laser.Methods: six bacterial isolates were isolated from human samples of diabetic foot infections, which used for preparation of vaccines. The experiment was conducted on fifteen adult male rabbits; they were divided into three groups with 5 rabbits each. Blood samples were collected from the marginal ear vein of the rabbits after one month of the vaccination, for the purpose of measuring the concentration of the immunoglobulins which present in their serum, using Radial Immunodiffusion (RID) method by specialized kits (LTA-Italy).Results: After irradiation of the bacterial suspensions with the diode laser for different exposure times and different frequencies, and the wavelengths used were (660, 820, 915) nm, the growth of bacterial isolates decreased until killed of bacteria at 40 min. The results of IgA concentrations for the three groups were highly significant (P < 0.01) when comparing the attenuated with control group, while were significant (P < 0.05) between the killed vaccine and control groups, and not significant variations between the attenuated and killed groups,Conclusions: Wavelength (660) nm was more effective in killing the bacteria, and the variations were not significant between the live attenuated and the killed vaccine
This study is designed to isolate and molecular identification of C. neoformans, C. neoformans is pathogenic yeast and effect immunocompromised and immunocompetent. Methods: collect 50 samples from pigeon dropping and 50 samples from pigeon fanciers (sputum). The collection time was extended from November 2021 to February 2022, then culture at SDA, BSA, Cryptococcus Differential agar, esculin agar, Eucalyptus leaves agar media and Brain heart infusion agar with methyldopa, biochemical test including urease test and methyldopa, and then confirm identification by molecular identification by PCR technique sequencing and genetic analysis. The results showed that 3 swaps taken from sputum of human included cryptococcus neoformans and 6 s
... Show MoreBackground: Sperm motility disorder is an important cause of infertility in male, and one of the causes of reduced motility of the sperm is the disorders of the mitochondria because it provides the required energy for sperm motility, Laser biostimulation or low-level laser therapy has a positive effect on the mitochondria and led to increasing the synthesis of ATP. Method: Twenty fresh human semen samples were used in this research study, each sample was separated into two portions, one was used as control which is not exposed to the laser beam and the other was irradiated with the wavelength of 410 nm diode laser with an output power of 100 mW and an exposure time of 60 seconds, then the measurement of
... Show MoreWe observed strong nonlinear absorption in the CdS nanoparticles of dimension in the range 50-100 nm when irradiant with femtosecond pulsed laser at 800 nm and 120 GW/cm 2 irradiance intensity. The repetition rate and average power were 250 kHz and
The simulation of passively Q-switching is four non – linear first order differential equations. The optimization of passively Q-switching simulation was carried out using the constrained Rosenbrock technique. The maximization option in this technique was utilized to the fourth equation as an objective function; the parameters, γa, γc and β as were dealt with as decision variables. A FORTRAN program was written to determine the optimum values of the decision variables through the simulation of the four coupled equations, for ruby laser Q–switched by Dy +2: CaF2.For different Dy +2:CaF2 molecules number, the values of decision variables was predicted using our written program. The relaxation time of Dy +2: CaF2, used with ruby was
... Show MoreIn this research, annealed nanostructured ZnO catalyst water putrefaction system was built using sun light and different wavelength lasers as stimulating light sources to enhance photocatalytic degradation activity of methylene blue (MB) dye as a model based on interfacial charges transfer. The structural, crystallite size, morphological, particle size, optical properties and degradation ability of annealed nanostructured ZnO were characterized by X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM) and UV-VIS Spectrometer, respectively. XRD results demonstrated a pure crystalline hexagonal wurtzite with crystalline size equal to 23 nm. From AFM results, the average particle size was 79.25nm. All MB samples and MB with annealed nanostr
... Show MoreFiber Bragg Grating has many advantages where it can be used as a temperature sensor, pressure sensor or even as a refractive index sensor. Designing each of this fiber Bragg grating sensors should include some requirements. Fiber Bragg grating refractive index sensor is a very important application. In order to increase the sensing ability of fiber Bragg gratings, many methods were followed. In our proposed work, the fiber Bragg grating was written in a D-shaped optical fiber by using a phase mask method with KrFexcimer. The resultant fiber Bragg grating has a high reflectivity 99.99% with a Bragg wavelength of 1551.2 nm as a best result obtained from a phase mask with a grating period of 1057 nm. In this work it was found that the rota
... Show MoreThe propagation of laser beam in the underdense deuterium plasma has been studied via computer simulation using the fluid model. An appropriate computer code “HEATER” has been modified and is used for this purpose. The propagation is taken to be in a cylindrical symmetric medium. Different laser wavelengths (1 = 10.6 m, 2 = 1.06 m, and 3 = 0.53 m) with a Gaussian pulse type and 15 ns pulse widths have been considered. Absorption energy and laser flux have been calculated for different plasma and laser parameters. The absorbed laser energy showed maximum for = 0.53 m. This high absorbitivity was inferred to the effect of the pondermotive force.
This study aims to fabricate and assess the β-tricalcium phosphate (β-TCP) bioactive ceramic coat layer on bioinert ceramic zirconia implants through the direct laser melting technique by applying a long-pulsed Nd:YAG laser of 1064 nm. Surface morphologies, adherence, and structural change in the coatings were evaluated by optical microscopy, field emission scanning electron microscope, hardness, and x-ray diffractometer. The elastic modulus (EM) of the coating was also determined using the nanoindentation test. The quality of the coating was improved when the laser power was 90 W with a decrease in the scan speed to 4 mm s−1. The chemical composition of the coat was maintained after laser processing; also, the Energy Dispersive
... Show More