Background: Atrophic postoperative and traumatic scarring are common cosmetic problems for patients. Combining CO2 laser ablation with a fractional photothermolysis system in a treatment known as ablative fractional resurfacing fulfilling the new demands for a lesser risk of side effects and minimal or no downtime.Objective: To assess the safety and efficacy of ablation fractional CO2 laser treatments for surgical scarring .methods: Twenty one patient ( 14 women, and 7 men ) with various skin types , I to IV , aged 3 to 48 years , presents with 24 scars between June and December 2012 , four patients excluded from study because they are not continued in follow up , the remaining 17 patient completed all 3 treatments & 6 months follow up.Results: Adverse effects of treatment were mild to moderate , and no scarring or delayed onset hypopigmentation was observed, For all patients demonstrated improvements in skin texture and reduction of pain and discomfort and improvement of tenderness and hardness of the scar which become more soft and mature .Conclusions: The ablation CO2 laser treatment represent safe , effective treatment modality for improving scar quality , texture, maturation and appearance.Keywords: Ablative fractional lasers, CO2 lasers, traumatic scars, atrophic scars
Time is very important in educational institutions. It is also one of our contemporary problem ‚as time is a clear – cut and limited factor‚ it demands that administrators should monitor it by administering and monitoring the principles of time.
Hence‚ the researcher attempts to identify the skills of administrating time and the reasons that cause the waste of time of the Heads of Departments at university of Baghdad.
Significance of the research:
Time is very important to all educational administrators and one of them is the institutions of Higher education. One of the
... Show MoreCeramic coating compose from a ceramic mixture (MgO, Al2O3) and metall (Al-Ni) were produced by Thermal Spray Technique. The mixed ratio of used materials Al:Ni (50%) and 40% of Al2O3 and 10% MgO. This mixture was spray on a stainless steel substrate of type (316 L) by using thermal spray with flame method and at spraying distances (8, 12, 16 and 20) cm, then the prepared films were treated by laser and thermal treatment. After that performing a hardness and adhesion tests were eximined. The present study shows that the best value of the thermal treatment is 1000 ℃ for 30 mint; the optimum spray distance is 12 cm and most suitable laser is 500 mJ where the microscopic and mechanical character
... Show MoreAbstract
Objective(s): to Evaluation of Parents’ Knowledge about Nutritional Management of kids with Phenylketonuria; to Identify the association between parents’ Knowledge about nutritional management then their demographic variables of fathers, mothers (parents age, residence then socioeconomic position).
Methodology: A non-experimental project; was accompanied on parents of phenylketonuria kid in Baghdad town since the period 3 June to 5 October 2022. A Non-probability sample (convenience) of 35 PKU children and their parents (father and mother) was selected Purposively from the hospitals that are select for the study. A survey is built for the purpose of the educa
... Show MoreBackground: Surface treatment of machined dental zirconia for enhancement of the adhesion to resin cement, using Er,Cr:YSGG Laser. Materials and Methods: Total number of 42 zirconia disc specimens (9 mm diameter, and 2 mm height) was sintered according to the manufacturer instruction. They are divided into six groups, each group of seven samples. Laser groups (Experiment parameters) were depend on laser total irradiation time, pulse duration, and power. Group (A): 20 sec., 60 µs pulse duration. Group (B): 30 sec., 60 µs pulse duration. Group (C): 40 sec., 60 µs pulse duration. Group (D): 20 sec., 700 µs pulse duration. Group (E): 30 sec., 700 µs pulse duration, with different powers used (1, 1
... Show MorePumping a BBO crystal by a violet diode laser with a wavelength of (405 nm) output power of (24 mW) and a line width of (3nm) was employed to generate entangled photons with a wavelength of 810 nm by achieving type II phase matching conditions.The coincidence count rate obtained in this experiment was in the range of (18000) counts/s. Two BBO crystals with different thicknesses of (4 mm and 2 mm) were tested, where maximum count rates of about (18000) counts/s was obtained with a (5*5*2) mm BBO crystal where the short coherence time for the pumping source was tolerated by using shorter BBO crystals. Also, the effect of compensating crystal on the walk-off effect was studied. The coincidence count rates were increased by using these crystal
... Show MoreThis paper presents on the design of L-Band Multiwavelength laser for Hybrid Time Division Multiplexing/ Wavelength Division Multiplexing (TDM/WDM) Passive Optical Network (PON) application. In this design, an L-band Mulltiwavelength Laser is designed as the downstream signals for TDM/WDM PON. The downstream signals ranging from 1569.865 nm to 1581.973 nm with 100GHz spacing. The multiwavelength laser is designed using OptiSystem software and it is integrated into a TDM/WDM PON that is also designed using OptiSystem simulation software. By adapting multiwavelength fiber laser into a TDM/WDM network, a simple and low-cost downstream signal is proposed. From the simulation design, it is found that the proposed design is suitable to be used
... Show MoreIn this work, the spectra of plasma glow produced by Nd:YAG laser operated at 1.064 μm on Al-Mg alloys with same molar ratio samples in air were analyzed by comparing the atomic lines of aluminum and magnesium with that of strong standard lines. The effect of laser energies on spectral lines, produced by laser ablation, were investigated using optical spectroscopy, the electron density was measured utilizing the Stark broadening of magnesium-aluminum lines and the electron temperature was calculated from the standard Boltzmann plot method. The results that show the electron temperature increases in magnesium and aluminum targets but decreases in magnesium: aluminum alloy target, also show the electron density increase all the aluminum,
... Show MoreThe aim of this research is to design and construct a semiconductor laser range finder
operating in the near infrared range for ranging and designation. The main part of the range finder is the
transmitter which is a semiconductor laser type GaAs of 0.904 mm wavelength with a beam expander,
and the receiver with its collecting optics. The characteristics of transmitter pulse width were 200ns and
threshold current 10 Amp. and maximum operating current 38 Amp. The repetition rate was set at 660 Hz
and maximum output power about 1 watt. The divergence of the beam was 0.268o. A special computer
code was used for optimum optical design and laser spot size analysis and for calculation of atmosphere
attenuation.