ABSTRACTBackground: cochlear implants are electronic devices that convert sound energy into electrical signals to stimulate ganglion cells and cochlear nerve fibers. These devices are indicated for patients with severe to profound sensorineural hearing losses who receive little or no benefit from hearing aids. The implant basically takes over the function of the cochlear hair cells. The implant consists of external components (microphone, speech processor and transmitting coil) and internal components (receiver stimulator and electrode array). The implant is inserted via a trans mastoid facial recess approach to the round window and scala tympani.Objectives: to determine the effectiveness and safety of non fixation method in cochlear implantation.Methods: a prospective study carried out from September 2009 to September 2012 in Gazi Hariri Hospital. Eighty patients with congenital severe –profound sensorineural hearing loss prepared for cochlear implantation involved in the study and divided into 2 groups. Group A includes 40 patients in whom the internal device was fixed to the skull by nylon suture materials through small burr holes on both sides of the well. Group B includes 40 patients in whom the internal device placed in a tight sub pericranial pocket without nylon fixation to the skull. All patients followed postoperatively for 6 months observing wound healing and local complications (hematoma, infection, wound dehiscence, device extrusion and migration).Results: mean age 4.2 years and male-female ratio was 1.3:1.Group A: 1 patient (2.5%) developed minor wound infection treated conservatively. Three patients (7.5%) developedsevere wound infection with wound breakdown and device extrusion despite the use of antibiotics and local rotational flaps, the device was explanted in those 3 patients. Two patients (5%) developed hematoma without history of trauma and treated conservatively. One patient (2.5%) had device migration without affection of its function.Group B: 2 patients developed minor wound infection treated conservatively. One patient (2.5%) had severe wound infection ends up with wound dehiscence and device extrusion despite the use of antibiotics and local rotational flaps. Explantation of the device was done for this patient. Hematoma occurred in one patient (2.5%) without history of trauma and treated conservatively. Another one patient (2.5%) developed device migration without impairment of its function.Conclusion: creation of sub pericranial pocket without internal device fixation by nylon materials is an effective and reliable method in cochlear implantation without compromising the patient safety or device performance.Key words: cochlear implantation, non- fixation, sub pericranial pocket
Hypothesis CO2 geological storage (CGS) involves different mechanisms which can store millions of tonnes of CO2 per year in depleted hydrocarbon reservoirs and deep saline aquifers. But their storage capacity is influenced by the presence of different carboxylic compounds in the reservoir. These molecules strongly affect the water wetness of the rock, which has a dramatic impact on storage capacities and containment security. However, precise understanding of how these carboxylic acids influence the rock’s CO2-wettability is lacking. Experiments We thus systematically analysed these relationships as a function of pressure, temperature, storage depth and organic acid concentrations. A particular focus was on identifying organic acid conce
... Show MoreFor more than a decade, externally bonded carbon fiber reinforced polymer (CFRP) composites successfully utilized in retrofitting reinforced concrete structural elements. The function of CFRP reinforcement in increasing the ductility of reinforced concrete (RC) beam is essential in such members. Flexural and shear behaviors, ductility, and confinement were the main studied properties that used the CFRP as a strengthening material. However, limited attention has been paid to investigate the energy absorption of torsion strengthening of concrete members, especially two-span concrete beams. Hence, the target of this work is to investigate the effectiveness of CFRP-strengthening technique with regard to energy absorption of two-span RC
... Show MoreGlass Fiber Reinforced Polymer (GFRP) beams have gained attention due to their promising mechanical properties and potential for structural applications. Combining GFRP core and encasing materials creates a composite beam with superior mechanical properties. This paper describes the testing encased GFRP beams as composite Reinforced Concrete (RC) beams under low-velocity impact load. Theoretical analysis was used with practical results to simulate the tested beams' behavior and predict the generated energies during the impact loading. The impact response was investigated using repeated drops of 42.5 kg falling mass from various heights. An analysis was performed using accelerometer readings to calculate the generalized inertial load
... Show MoreRapid worldwide urbanization and drastic population growth have increased the demand for new road construction, which will cause a substantial amount of natural resources such as aggregates to be consumed. The use of recycled concrete aggregate could be one of the possible ways to offset the aggregate shortage problem and reduce environmental pollution. This paper reports an experimental study of unbound granular material using recycled concrete aggregate for pavement subbase construction. Five percentages of recycled concrete aggregate obtained from two different sources with an originally designed compressive strength of 20–30 MPa as well as 31–40 MPa at three particle size levels, i.e., coarse, fine, and extra fine, were test
... Show MoreIn the current study, synthesis and characterization of silver nanoparticles (AgNPs) before and after functionalization with ampicillin antibiotic and their application as anti-pathogenic agents towards bacteria were investigated. AgNPs were synthesized by a green method from AgNO3 solution with glucose subjected to microwave radiation. Characterization of the nanoparticles was conducted using UV-Vis spectroscopy, scanning electron microscopy (SEM), zeta potential determination and Fourier transform infrared (FTIR) spectroscopy. From SEM analysis, the typical silver nanoparticle particle size was found to be 30 nm and Zeta potential measurements gave information about particle stability. Analysis of FTIR patterns and UV-VIS spectroscopy con
... Show More
Background: The purpose of this study was to evaluate the effect of in vitro long-term simulation of oral conditions on the bond strength of PEEK CAD/CAM lingual retainers.
Material and methods: The sample consisted of 12 PEEK CAD/CAM retainers each composed of 2 centrally perforated 3x4mm pads joined by a connector. They were treated by 98% sulfuric acid for 1 minute and then conditioned with Single Bond Universal and bonded to the lingual surface of premolar teeth by 3M Transbond TM System. Half of the retainers were artificially aged using a 30-day water storage and 5000 thermocycling protocol before bond strength testing to compare with the non-aged specimens.
Results: The artificially aged retainers showed a marginally
... Show More