Background: Urinary tract infections (UTIs) and their complications such as Bladder cancer (Bl. C.) are a health growing problem worldwide. Objective: To shed light on this subject, present study was done to investigate relationship between recurrent urinary tract infection (RUTI) due to Escherichia coli (E. coli) and Bl. C.Type of study: Cross-sectional study. Methods: This study included 130 patients with RUTI, 50 patients with Bl. C. and 50 control of both sexes (aged 7-85 years) attending Al-Zahra Teaching Hospital in Al-Kut/Wassit governorate and Al-Harery Teaching Hospital of specialized surgeries/Baghdad. The patients were divided into two groups: the first group (n=130) included those who were suffering from recurrent UTI without bladder cancer and diagnosed clinically as having recurrent UTI. The second group(n=50) included those who had bladder cancer. One hundred and thirty morning midstream urine specimens were collected from recurrent urinary tract infection patients and 50 from healthy persons as a control and also 50 biopsy specimens collected from recurrent UTI with bladder cancer(after surgical operation to these patients) during beginning of October 2012 to end of March 2013. Results: Intracellular bacterial communities (ICBC) (namely Escherichia coli) was isolated from (68/130) 53% from patients with RUTI while (12/50) 24% isolated from patients with Bladder cancer In this study, other molecular technique called Repetitive extragenic palindromic (REP) were used for drawing the genetic map of bacteria to know the points of similarity and differences between isolated bacteria. A difference between bacteria in each group were found, but when comparing the genetic map of UPEC isolated from patients with Bl. C. with those isolated from patients with recurrent UTI high difference between them were seen. Conclusion: Detecting the intracellular bacterial communities (namely E. coli) in patients with recurrent UTI, with or without bladder cancer. Detecting similarity and difference in genetic map of UPEC isolated from RUTI and Bl. C. by Repetitive extragenic palindromic DNA (REP) technique, in which found high similarity between UPEC isolated from each group but difference from UPEC isolated from other group
Medium Access Control (MAC) spoofing attacks relate to an attacker altering the manufacturer assigned MAC address to any other value. MAC spoofing attacks in Wireless Fidelity (WiFi) network are simple because of the ease of access to the tools of the MAC fraud on the Internet like MAC Makeup, and in addition to that the MAC address can be changed manually without software. MAC spoofing attacks are considered one of the most intensive attacks in the WiFi network; as result for that, many MAC spoofing detection systems were built, each of which comes with its strength and weak points. This paper logically identifies and recognizes the weak points
and masquerading paths that penetrate the up-to-date existing detection systems. Then the
Most intrusion detection systems are signature based that work similar to anti-virus but they are unable to detect the zero-day attacks. The importance of the anomaly based IDS has raised because of its ability to deal with the unknown attacks. However smart attacks are appeared to compromise the detection ability of the anomaly based IDS. By considering these weak points the proposed
system is developed to overcome them. The proposed system is a development to the well-known payload anomaly detector (PAYL). By
combining two stages with the PAYL detector, it gives good detection ability and acceptable ratio of false positive. The proposed system improve the models recognition ability in the PAYL detector, for a filtered unencrypt
Pattern matching algorithms are usually used as detecting process in intrusion detection system. The efficiency of these algorithms is affected by the performance of the intrusion detection system which reflects the requirement of a new investigation in this field. Four matching algorithms and a combined of two algorithms, for intrusion detection system based on new DNA encoding, are applied for evaluation of their achievements. These algorithms are Brute-force algorithm, Boyer-Moore algorithm, Horspool algorithm, Knuth-Morris-Pratt algorithm, and the combined of Boyer-Moore algorithm and Knuth–Morris– Pratt algorithm. The performance of the proposed approach is calculated based on the executed time, where these algorithms are applied o
... Show MoreToday’s modern medical imaging research faces the challenge of detecting brain tumor through Magnetic Resonance Images (MRI). Normally, to produce images of soft tissue of human body, MRI images are used by experts. It is used for analysis of human organs to replace surgery. For brain tumor detection, image segmentation is required. For this purpose, the brain is partitioned into two distinct regions. This is considered to be one of the most important but difficult part of the process of detecting brain tumor. Hence, it is highly necessary that segmentation of the MRI images must be done accurately before asking the computer to do the exact diagnosis. Earlier, a variety of algorithms were developed for segmentation of MRI images by usin
... Show MoreThe cuneiform images need many processes in order to know their contents
and by using image enhancement to clarify the objects (symbols) founded in the
image. The Vector used for classifying the symbol called symbol structural vector
(SSV) it which is build from the information wedges in the symbol.
The experimental tests show insome numbersand various relevancy including
various drawings in online method. The results are high accuracy in this research,
and methods and algorithms programmed using a visual basic 6.0. In this research
more than one method was applied to extract information from the digital images
of cuneiform tablets, in order to identify most of signs of Sumerian cuneiform.
Background: Sprite coding is a very effective technique for clarifying the background video object. The sprite generation is an open issue because of the foreground objects which prevent the precision of camera motion estimation and blurs the created sprite. Objective: In this paper, a quick and basic static method for sprite area detection in video data is presented. Two statistical methods are applied; the mean and standard deviation of every pixel (over all group of video frame) to determine whether the pixel is a piece of the selected static sprite range or not. A binary map array is built for demonstrating the allocated sprite (as 1) while the non-sprite (as 0) pixels valued. Likewise, holes and gaps filling strategy was utilized to re
... Show More