Preferred Language
Articles
/
jkmc-326
Deep Vein Thrombosis Predisposing Factors Analysis Using Association Rules Mining
...Show More Authors

Background: DVT is a very common problem with a very serious complications like pulmonary embolism (PE) which carries a high mortality,and many other chronic and annoying complications ( like chronic DVT, post-phlebitic syndrome, and chronic venous insufficiency) ,and it has many risk factors that affect its course, severity ,and response to treatment. Objectives: Most of those risk factors are modifiable, and a better understanding of the relationships between them can be beneficial for better assessment for liable pfatients , prevention of disease, and the effectiveness of our treatment modalities. Male to female ratio was nearly equal , so we didn’t discuss the gender among other risk factors. Type of the study:A cross- sectional study.Methods: Data taken from 114 patients with DVT were analyzed by association rules mining.Immobility was the most important risk factor. Results: Smoking add more risk to immobile, post operative patient. Age per se has no effect.100% of patients with long bone fracture, were immobile. Fever occurred in one third of post operative patients who develop DVT. Conclusions: Association rules mining allow better and faster analysis of more data with an interactive powerful system, which saves time and effort, and discovers the relations among many factors to one or more than one factors. So, we use this method for analysis in this study, and we get the above mentioned relations, which are important for the future management of DVT.

 
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Oct 01 2017
Journal Name
International Journal Of Computer Science And Information Security (ijcsis)
Finite State Automata Generator for DNA Motif Template as Preparation Step for Motif Mining
...Show More Authors

There are many tools and S/W systems to generate finite state automata, FSA, due to its importance in modeling and simulation and its wide variety of applications. However, no appropriate tool that can generate finite state automata, FSA, for DNA motif template due to the huge size of the motif template. In addition to the optional paths in the motif structure which are represented by the gap. These reasons lead to the unavailability of the specifications of the automata to be generated. This absence of specifications makes the generating process very difficult. This paper presents a novel algorithm to construct FSAs for DNA motif templates. This research is the first research presents the problem of generating FSAs for DNA motif temp

... Show More
Preview PDF
Publication Date
Sat Aug 12 2017
Journal Name
Journal Of Engineering
Prepare rules spatial data for soils and the Calculation of an Area in Iraq for Industrial Purposes using Geographic Information Systems (GIS)
...Show More Authors

 
      The process of soil classification in Iraq for industrial purposes is important topics that need to be extensive and specialized studies. In order for the advancement of reality service and industrial in our dear country, that a lot of scientific research touched upon the soil classification in the agricultural, commercial and other fields. No source and research can be found that touched upon the classification of land for industrial purposes directly. In this research specialized programs have been used such as geographic information system software The geographical information system permits the study of local distribution of phenomena, activities and the aims that can be determined in the loca

... Show More
View Publication Preview PDF
Publication Date
Wed May 10 2023
Journal Name
Diagnostics
A Deep Feature Fusion of Improved Suspected Keratoconus Detection with Deep Learning
...Show More Authors

Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with

... Show More
View Publication
Scopus (32)
Crossref (30)
Scopus Clarivate Crossref
Publication Date
Sat Aug 10 2024
Journal Name
American Journal Of Economics And Business Innovation
Factors Associated with Employees’ Intention to Leave in ICT Sector in Iraq: A Factor Analysis
...Show More Authors

The current paper aims to identify potential factors associated with employees’ intentions to leave information and communication technology companies in Iraq. There is evident variability in the literature regarding these factors; hence, a factor analysis approach was employed to identify these factors within the surveyed environment. Due to the difficulty in precisely delineating the size of the research population, a purposive sampling method was employed to reach an appropriate number of respondents within the aforementioned companies. A total of 288 employees responded to the survey conducted via Google Forms. The test results revealed the presence of five primary factors associated with employees’ intentions to leave, name

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed May 03 2023
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Enhancing smart home energy efficiency through accurate load prediction using deep convolutional neural networks
...Show More Authors

The method of predicting the electricity load of a home using deep learning techniques is called intelligent home load prediction based on deep convolutional neural networks. This method uses convolutional neural networks to analyze data from various sources such as weather, time of day, and other factors to accurately predict the electricity load of a home. The purpose of this method is to help optimize energy usage and reduce energy costs. The article proposes a deep learning-based approach for nonpermanent residential electrical ener-gy load forecasting that employs temporal convolutional networks (TCN) to model historic load collection with timeseries traits and to study notably dynamic patterns of variants amongst attribute par

... Show More
View Publication
Crossref
Publication Date
Thu Aug 31 2023
Journal Name
Journal Européen Des Systèmes Automatisés​
Deep Learning Approach for Oil Pipeline Leakage Detection Using Image-Based Edge Detection Techniques
...Show More Authors

Natural gas and oil are one of the mainstays of the global economy. However, many issues surround the pipelines that transport these resources, including aging infrastructure, environmental impacts, and vulnerability to sabotage operations. Such issues can result in leakages in these pipelines, requiring significant effort to detect and pinpoint their locations. The objective of this project is to develop and implement a method for detecting oil spills caused by leaking oil pipelines using aerial images captured by a drone equipped with a Raspberry Pi 4. Using the message queuing telemetry transport Internet of Things (MQTT IoT) protocol, the acquired images and the global positioning system (GPS) coordinates of the images' acquisition are

... Show More
View Publication
Scopus (13)
Crossref (6)
Scopus Crossref
Publication Date
Mon Jul 15 2024
Journal Name
2024 46th Annual International Conference Of The Ieee Engineering In Medicine And Biology Society (embc)
Automatic COVID-19 Detection from Chest X-ray using Deep MobileNet Convolutional Neural Network
...Show More Authors

View Publication
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Mon Apr 01 2024
Journal Name
Telkomnika (telecommunication Computing Electronics And Control)
Classification of grapevine leaves images using VGG-16 and VGG-19 deep learning nets
...Show More Authors

The successful implementation of deep learning nets opens up possibilities for various applications in viticulture, including disease detection, plant health monitoring, and grapevine variety identification. With the progressive advancements in the domain of deep learning, further advancements and refinements in the models and datasets can be expected, potentially leading to even more accurate and efficient classification systems for grapevine leaves and beyond. Overall, this research provides valuable insights into the potential of deep learning for agricultural applications and paves the way for future studies in this domain. This work employs a convolutional neural network (CNN)-based architecture to perform grapevine leaf image classifi

... Show More
View Publication
Scopus (22)
Crossref (19)
Scopus Crossref
Publication Date
Wed Aug 30 2023
Journal Name
Baghdad Science Journal
Deep Learning-based Predictive Model of mRNA Vaccine Deterioration: An Analysis of the Stanford COVID-19 mRNA Vaccine Dataset
...Show More Authors

The emergence of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has resulted in a global health crisis leading to widespread illness, death, and daily life disruptions. Having a vaccine for COVID-19 is crucial to controlling the spread of the virus which will help to end the pandemic and restore normalcy to society. Messenger RNA (mRNA) molecules vaccine has led the way as the swift vaccine candidate for COVID-19, but it faces key probable restrictions including spontaneous deterioration. To address mRNA degradation issues, Stanford University academics and the Eterna community sponsored a Kaggle competition.This study aims to build a deep learning (DL) model which will predict deterioration rates at each base of the mRNA

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (3)
Scopus Crossref
Publication Date
Sat Feb 14 2026
Journal Name
Journal Of Al-ma'moon College
The Rules of Conduct for Cultivated Ladies in Jane Austen's Time
...Show More Authors

There is no doubt that Jane Austen is one of the most studied authors of the late 18th and early 19th centuries. Her female characters have been extensively studied and they seem to have aroused much interest as manifestations of the conduct of their time. Her heroines have realized that there were many mistakes in the rules of conduct that controlled and restricted their behaviors. Thus, they have found no fault in correcting these mistakes, by behaving naturally without acting. Elizabeth Bennet the heroine of Pride and Prejudice and Marianne Dashwood of Sense and Sensibility are the chosen examples of that kind of women.

View Publication