Background:Measurement of hemoglobin A1c (A1C) is a renowned tactic for gauging long-term glycemic control, and exemplifies an outstanding influence to the quality of care in diabetic patients.The concept of targets is open to criticism; they may be unattainable, or limit what could be attained, and in addition they may be economically difficult to attain. However, without some form of targeted control of an asymptomatic condition it becomes difficult to promote care at allObjectives: The present article aims to address the most recent evidence-based global guidelines of A1C targets intended for glycemic control in Type 2 Diabetes Mellitus (T2D).Key messages:Rationale for Treatment Targets of A1C includesevidence for microvascular and macrovascular protectionand changes in quality of life. More or less stringent A1C goals may be appropriate for individual patients, andgoals should be individualized based on:duration of diabetes, age/life expectancy, comorbid conditions, CVD or advanced microvascular complications,hypoglycemia unawareness, and individual patient considerations
An antibacterial and antifungal piperonal-derived compound and its Rh(III), Pd(II), Pt(IV), and Cd(II) metal complexes were synthesized and characterized by spectroscopic methods, conductivity, metal analyses and magnetic moment measurements. The nature of the complexes formed in ethanolic solution was studied following the molar ratio method. From the spectral studies, octahedral geometry was suggested for rhodium (III) and platinum (IV) complexes, while a square planer structure was suggested for palladium (II) complex and a tetrahedral geometry for cadmium (II) complex. Structural geometries of these compounds were also suggested in gas phase by using hyperchem-8 program for the molecular mechanics and semi-empirical calculations.
... Show MoreBackground: Severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) is still a severe threaft for human health currently, and the researches about it is a focus topic worldwide.
Aim of the study: In this study, we will collect some laboratory results of the patients with coronavirus disease (COVID-19) to assess the function of liver, heart, kidney and even pancreas.
Subjects and Methods: Laboratory results of the patients with COVID-19 are collected. The biochemical indices are classified and used to assess the according function of liver, heart, kidney; meantime, and blood glucose is also observed and taken as an index to roughly evaluate pancreas.
Results: There were some in
... Show MoreA new ligand [4-Methoxy -N-(pyrimidine-2-ylcarbamothioyl) benzamide] (MPB) was synthesized by reactioniofi(4-Methoxyibenzoyliisothiocyanate)withi(2-aminopyri-midine). The Ligand was characterized by elemental micro analysis (C.H.N.S),(FT-IR) (UV- Vis) and (1Hi,13CNMR)spectra. Some transition metals complexes of this ligand were prepared and characterized by (FT-IR, UV-Vis) spectra conductivity measurements magnetic susceptibility and atomic absorption. From the obtained results the molecular formula of all complexes was suggested to be [M(MPB)2Cl2] (M+2i=Cu, Mn, Co ,Ni ,Zn ,Cd and Hg),the proposed geometrical structure for all complexes was an octahedral.
In recent years, nano-modified asphalt has gained significant attraction from researchers in the design of asphalt pavement fields. The recently discovered Titanium dioxide nanoparticles (TiO2) are among the most exciting and promising nanomaterials. This study examines the effect of 1, 3, 5, and 7% of nano-TiO2 by weight of asphalt on some of its rheological and hardened properties. The experimental study included physical and rheological properties. The asphalt penetration, softening point, ductility, and rotational viscometer tests indicate that 5% nano-TiO2 is the ideal amount to be added to bitumen as a modifier. The
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pandemic worldwide. On a daily basis the number of deaths associated with COVID-19 is rapidly increasing. The main transmission route of SARS-CoV-2 is through the air (airborne transmission). This review details the airborne transmission of SARS-CoV-2, the aerodynamics, and different modes of transmission (e.g. droplets, droplet nuclei, and aerosol particles). SARS-CoV-2 can be transmitted by an infected person during activities such as expiration, coughing, sneezing, and talking. During such activities and some medical procedures, aerosols and droplets contaminated with SARS-CoV-2 particles are formed. Depending on their
... Show MoreThe Ligand 2-(4-nitrophenyl azo)-2,4-dimethylphenol derived from 4-nitroaniline and 2,4-dimethylphenol was synthesized. The prepared ligand was identified by FT-IR and UV-Vis spectroscopic techniques. Treatment of the ligand with the following metal ions ( CuII , ZnII ,CdII and HgII) in aqueous ethanol with a 1:2 M:L ratio. Characterization of these compounds has been done on the basis of FT-IR and UV-Vis, as well as magnetic susceptibility and conductivity measurements. On the basis of physicochemical data tetrahedral geometries were assigned for the complexes.
structural and electrical of CuIn (Sex Te1-x)2
This work includs synthesis of several Schiff bases by condensation of 6- methoxy – 2- amino benzothiazole with some aldehydes and ketones (2- hydroxyl benzaldehyde, 4- hydroxyl benzaldehyde, 4- N,N –dimethy amino acetophenone, benzophenone) to abtain schiff bases (1-5). These schiff bases were found to react with phthalate anhydride to give oxazepine derivatives (6-10) that were reacted with primary aromatic amines to give Diazepine derivatives (11-15). Besides, we prepared new tetrazole derivatives (16-20) from the reaction of the prepared Schiff bases with sodium azide in the prepared compounds that were characterized by physical properties, FT-IR and some of the 1H-NMR and 13C –NMR spectroscopy.
The mechanism of the electronic flow rate at Al-TiO2 interfaces system has been studied using the postulate of electronic quantum theory. The different structural of two materials lead to suggestion the continuum energy level for Al metal and TiO2 semiconductor. The electronic flow rate at the Al-TiO2 complex has affected by transition energy, coupling strength and contact at the interface of two materials. The flow charge rate at Al-TiO2 is increased by increasing coupling strength and decreasing transition energy.
We demonstrate that the selective hydrogenation of acetylene depends on energy profile of the partial and full hydrogenation routes and the thermodynamic stability of adsorbed C2H2 in comparison to C2H4.