Background: Expectoration of blood that originated in the lungs or bronchial tubes is a frightening symptom for patients and often is a manifestation of significant and possibly dangerous underlying disease. Tuberculosis was and still one of the common causes followed by bronchiactasis , bronchitis, and lung cancer. Objectives: The aim of this study is to find the frequency of causes of respiratory tract bleeding in 100 patients attending alkindy teaching hospital.Type of the study: : Prospective descriptive observational study Methods of a group of patients consist of one hundred consecutive adult patients, with Lower respiratory tract bleeding are studied. History, physical examination, and a group of selected investigations performed, including complete blood examination and blood film, PT, PTT, sputum direct gram and AFB stain, cytology ,chest radiography, CT scan, and bronchoscopy when indicated.Results: pulmonary tuberculosis, acute bronchitis, lung carcinoma, and bronchectiasis are the major causes of hemoptysis in our study with 27%, 23%, 23%, 20% respectively. Of the included patients 63% were males, specially age 41-60, while 37% were females. The primary malignancy is more common than secondary cancer, and that squamous cell carcinoma, and adenocarcioma, are the most common.Conclusions: Tuberculosis is the main cause of lower respiratory tract bleeding, followed by lung carcinoma bronchitis, and bronchiactesis. Most of the patients are males and in middle age , sever bleeding is not common and squamous cell carcinoma is commonest cause regarding malignancies followed by adeno carcinoma
An oil spill is a leakage of pipelines, vessels, oil rigs, or tankers that leads to the release of petroleum products into the marine environment or on land that happened naturally or due to human action, which resulted in severe damages and financial loss. Satellite imagery is one of the powerful tools currently utilized for capturing and getting vital information from the Earth's surface. But the complexity and the vast amount of data make it challenging and time-consuming for humans to process. However, with the advancement of deep learning techniques, the processes are now computerized for finding vital information using real-time satellite images. This paper applied three deep-learning algorithms for satellite image classification
... Show MoreWith the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se
... Show MoreThe present paper concerns with the problem of estimating the reliability system in the stress – strength model under the consideration non identical and independent of stress and strength and follows Lomax Distribution. Various shrinkage estimation methods were employed in this context depend on Maximum likelihood, Moment Method and shrinkage weight factors based on Monte Carlo Simulation. Comparisons among the suggested estimation methods have been made using the mean absolute percentage error criteria depend on MATLAB program.
In networking communication systems like vehicular ad hoc networks, the high vehicular mobility leads to rapid shifts in vehicle densities, incoherence in inter-vehicle communications, and challenges for routing algorithms. It is necessary that the routing algorithm avoids transmitting the pockets via segments where the network density is low and the scale of network disconnections is high as this could lead to packet loss, interruptions and increased communication overhead in route recovery. Hence, attention needs to be paid to both segment status and traffic. The aim of this paper is to present an intersection-based segment aware algorithm for geographic routing in vehicular ad hoc networks. This algorithm makes available the best route f
... Show MoreThe transmitting and receiving of data consume the most resources in Wireless Sensor Networks (WSNs). The energy supplied by the battery is the most important resource impacting WSN's lifespan in the sensor node. Therefore, because sensor nodes run from their limited battery, energy-saving is necessary. Data aggregation can be defined as a procedure applied for the elimination of redundant transmissions, and it provides fused information to the base stations, which in turn improves the energy effectiveness and increases the lifespan of energy-constrained WSNs. In this paper, a Perceptually Important Points Based Data Aggregation (PIP-DA) method for Wireless Sensor Networks is suggested to reduce redundant data before sending them to the
... Show MoreIn this paper, a national grid-connected photovoltaic (PV) system is proposed. It extracts the maximum power point (MPP) using three-incremental-steps perturb and observe (TISP&O) maximum power point tracking (MPPT) method. It improves the classic P&O by using three incremental duty ratio (ΔD) instead of a single one in the conventional P and O MPPT method. Therefore, the system's performance is improved to a higher speed and less power fluctuation around the MPP. The Boost converter controls the MPPT and then is connected to a three-phase voltage source inverter (VSI). This type of inverter needs a high and constant input voltage. A second-order low pass (LC) filter is connected to the output of VSI to reduce t
... Show MoreThe second leading cause of death and one of the most common causes of disability in the world is stroke. Researchers have found that brain–computer interface (BCI) techniques can result in better stroke patient rehabilitation. This study used the proposed motor imagery (MI) framework to analyze the electroencephalogram (EEG) dataset from eight subjects in order to enhance the MI-based BCI systems for stroke patients. The preprocessing portion of the framework comprises the use of conventional filters and the independent component analysis (ICA) denoising approach. Fractal dimension (FD) and Hurst exponent (Hur) were then calculated as complexity features, and Tsallis entropy (TsEn) and dispersion entropy (DispEn) were assessed as
... Show More