Prostate cancer is the commonest male cancer and the second leading cause of cancer-related death in men. Over many decades, prostate cancer detection represented a continuous challenge to urologists. Although all urologists and pathologists agree that tissue diagnosis is essential especially before commencing active surgical or radiation treatment, the best way to obtain the biopsy was always the big hurdle. The heterogenicity of the tumor pathology is very well seen in its radiological appearance. Ultrasound has been proven to be of limited sensitivity and specificity in detecting prostate cancer. However, it was the only available targeting technique for years and was used to guide biopsy needle passed transrectally or transperineally. Magnetic Resonance Imaging (MRI) has revolutionized the process with the advent of its multiparametric imaging (mp MRI) where the prostate is evaluated by different MRI techniques and the likelihood of the detected lesion is scored using the new prostate imaging-reporting and data system (PIRADS) scoring. Despite the improved detection of clinically significant prostate cancer by mpMRI, the ideal way to target the area of suspicion detected by mpMRI is the next level of challenge. In this review article, we will discuss the recent methods of targeting and focus on the different platforms used to integrate the mpMRI static images with the real-time US scanning in what is called (US-MRI fusion techniques).
A new, simple, sensitive and fast developed method was used for the determination of methyldopa in pure and pharmaceutical formulations by using continuous flow injection analysis. This method is based on formation a burgundy color complex between methyldopa andammonium ceric (IV) nitrate in aqueous medium using long distance chasing photometer NAG-ADF-300-2. The linear range for calibration graph was 0.05-8.3 mmol/L for cell A and 0.1-8.5 mmol/L for cell B, and LOD 952.8000 ng /200 µL for cell A and 3.3348 µg /200 µL for cell B respectively with correlation coefficient (r) 0.9994 for cell A and 0.9991 for cell B, RSD % was lower than 1 % for n=8. The results were compared with classical method UV-Spectrophotometric at λ max=280 n
... Show MoreObjectives: To evaluate the effect of vitamin D3 local injections on apical root resorption, alveolar bone integrity, and chair-side time following three and six months of canine retraction. Subjects and Methods: Seventeen adult patients (18-35 years old) of class I and II malocclusions were recruited, who required bilateral maxillary 1st premolars extraction before starting maxillary canines retraction. The experimental side received 25 pg dose of vitamin D3 injected locally into the distal periodontal sulcus of the canine (before force application) every three weeks, while the control side received retraction force only. Periapical radiographic evaluation was conducted after 3 and 6 months of the start of canines' retraction. Results: At
... Show MoreIn the present study, a novel ligand (L) made of 2-hydroxynaphthaldehyde and 3-hydrazone-1,3-dihydro-indole-2-one(3-[(3-hydroxynaphthalen-2-yl-ethylidene)-hydrazono]-1,3-dihydro-indol-2-one). The ligand was characterized by FTIR, UV-vis, mass, 1H-NMR, 13C-NMR, and CHN elemental analysis. New complexes of this ligand were created by treating methanol and a drop of DMF solution of the produced ligand with the hydrated metal salts of Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) in a molar ratio of 2:1 (L:M). As a result, complexes have been emerged and identified FTIR, UV-vis, C.H.N., chloride-containing, molar conductance, magnetic susceptibility, and atomic absorption. The characterization result for each complex indicated complexes wi
... Show MoreFocusing of Gaussian laser beam through nonlinear media can induce spatial self- phase modulation which forms a far field intensity pattern of concentric rings. The nonlinear refractive index change of material depends on the number of pattern rings. In this paper, a formation of tunable nonlinear refractive index change of hybrid functionalized carbon nanotubes/silver nanoparticles acetone suspensions (F-MWCNTs/Ag-NPs) at weight mixing ratio of 1:3 and volume fraction of 6x10-6 , 9x10-6 , and 18x10-6 using laser beam at wavelength of 473nm was investigated experimentally. The results showed that tunable nonlinear refractive indices were obtained and increasing of incident laser power density led to increase the nonlinear refractive inde
... Show MoreA new mixed ligand complexes were prepared by reaction of quinoline -2-carboxylic acid (L1) and 4,4?dimethyl-2,2?-bipyridyl (L2) with V(IV),Cr(III), Rh(III), Cd(II) and Pt(IV) ions. These complexes were isolated and characterized by (FT-IR) and (UV-Vis) spectroscopy, elemental analysis, flame atomic absorption technique, thermogravimetric analysis, in addition to magnetic susceptibility and conductivity measurements. Most complexes were mononuclear and with octahedral geometry, except Cd (II) with tetrahedral geometry, and V (IV) with square pyramidal geometry. A theoretical treatment of the ligands and the prepared complexes in gas phase was done using two programs Hyperchem.8 and Gaussian program (GaussView Currently Available Versions (
... Show MoreEight new complexes with the general formula [M(L)2(H2O)2] were prepared resulting from the reaction of the new Schiff base ligand [(E)-5- ((2-hydroxybenzylidene)amino)-2-phenyl-2,4-dihydro-3H-pyrazol-3- one(L)] with metal ions [manganese, cadmium, zinc, copper, nickel, cobalt, Mercury Bivalent and tetravalent platinum. This ligand was derived from the reaction of the amine (5-amino-2-phenyl-2,4-dihydro3H-pyrazol-3-one) with Salicylaldehyde, which is linked to the metal ions via two atoms. The nitrogen is the isomethene group, and the oxygen is the hydroxide group of the pyrazoline ring. The prepared compounds were characterized using infrared spectroscopy, nuclear magnetic resonance spectroscopy, and ultraviolet spectroscopy, and from the
... Show MoreThe current study was to examine the reliability and effectiveness of using most abundant, inexpensive waste in the form of scrap raw zero valent aluminum ZVAI and zero valent iron ZVI for the capture, retard, and removal of one of the most serious and hazardous heavy metals cadmium dissolved in water. Batch tests were conducted to examine contact time (0-250) min, sorbent dose (0.25-1 g ZVAI/100 mL and 2-8 g ZVI/100 mL), initial pH (3-6), pollutant concentration of 50mg/L initially, and speed of agitation (0-250) rpm . Maximum contaminant removal efficiency corresponding to (90 %) for cadmium at 250 min contact time, 1g ZVAI/ 6g ZVI sorbent mass ratio, pH 5.5, pollutant concentration of 50 mg/L initially, and 250 rpm agitation speed wer
... Show More